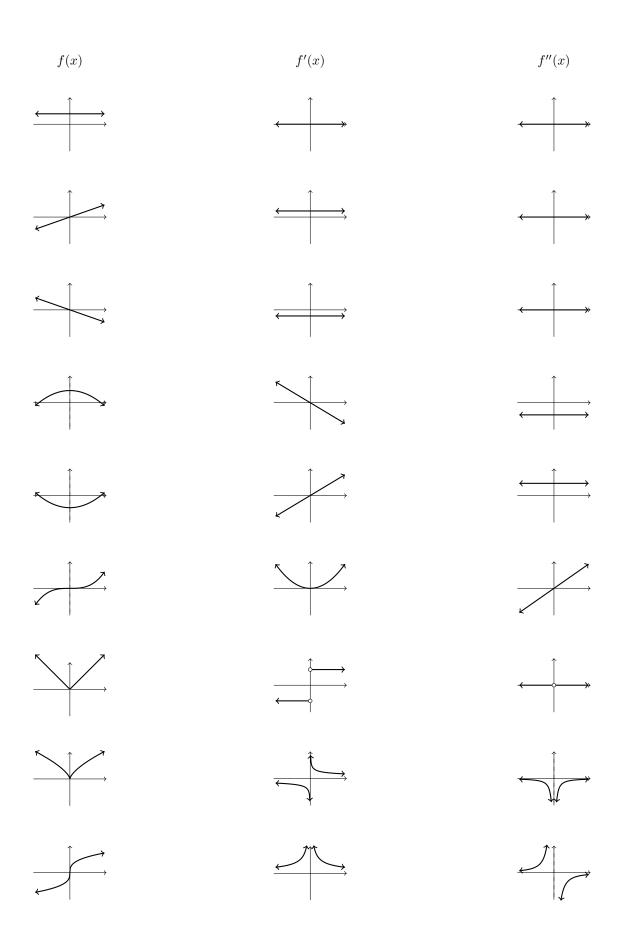
Relationships Among f, f', f''

1. What do f' and f'' say about f?

- $f'(x) > 0 \Rightarrow f$ increasing on that interval.
- $f'(x) < 0 \Rightarrow f$ decreasing on that interval.
- |f'(x)| indicates steepness of f.

- $f''(x) > 0 \Rightarrow f$ concave up; f' is increasing.
- $f''(x) < 0 \Rightarrow f$ concave down; f' is decreasing.
- |f''(x)| indicates how quickly slopes change.

2. Graph of f(x) given f' and f''


f'(x)	f''(x)	What f is doing	Schematic of $f(x)$
> 0	> 0	Increasing; concave up (slopes becoming <i>more positive</i>).	
> 0	< 0	Increasing; concave down (slopes becoming less positive).	
< 0	> 0	Decreasing; concave up (slopes becoming less negative).	
< 0	< 0	Decreasing; concave down (slopes becoming <i>more negative</i>).	

3. Graph of f'(x) given f(x)

Feature of f	Implication for f'
Horizontal tangent	f'(x) = 0.
Increasing region	f'(x) > 0.
Decreasing region	f'(x) < 0.
Concave up $(f'' > 0)$	f' is increasing.
Concave down $(f'' < 0)$	f' is decreasing.

Tips:

- Sketch slopes on f first (positive, negative, zero).
- Use concavity of f to decide whether f' rises or falls.

