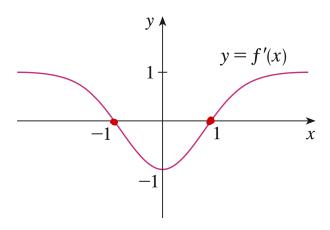
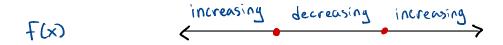
4.3 What Does f' Say About f?

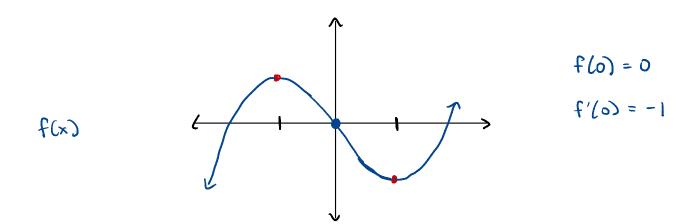
Theorem.

- If f'(x) < 0 on an interval, then f is decreasing on that interval.
- If f'(x) > 0 on an interval, then f is __increasing___ on that interval.

Example. The graph of the derivative f' of a function f is shown below. If f(0) = 0, sketch a possible graph of f.







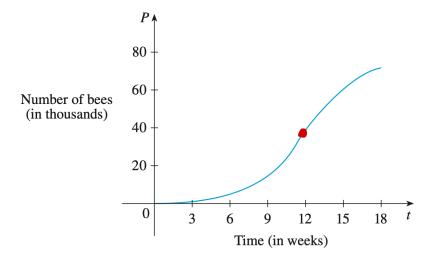
Theorem.

• If f''(x) < 0 on an interval, then f is ______ concave down___ on that interval.

• If f''(x) > 0 on an interval, then f is <u>Concave</u> up on that interval.

Example. Below is a population graph for honeybees raised in an apiary.

- Over what intervals is *P* concave upward or concave downward?
- When is the rate of population increasing the fastest?



- 1 Concave up (0,12) Concave down (12,00)
- (2) Fastest rate of increase is at the most steep tangent line (pos. slope)

 (Why is this where f changes concavity???)

Example. Sketch a possible graph of a function f that satisfies the following conditions:

- f'(x) > 0 on $(-\infty, 1)$, f'(x) < 0 on $(1, \infty)$.
- f''(x) > 0 on $(-\infty, -2)$ and $(2, \infty)$, f''(x) < 0 on (-2, 2).
- $\lim_{x \to -\infty} f(x) = -2$, $\lim_{x \to \infty} f(x) = 0$.

