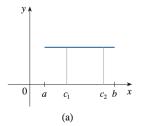
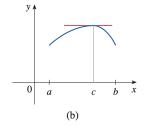
4.2 The Mean Value Theorem

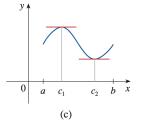
Theorem (Rolle's Theorem). Let f be a function that satisfies the following:

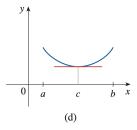
- 1. f is continuous on the closed interval [a, b].
- 2. f is differentiable on the open interval (a, b).
- 3. f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.



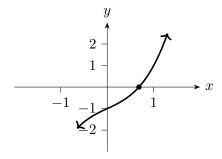






Example. If an object is in the same place at two different instants t = a and t = b, what does Rolle's Theorem say about the velocity of the object?

Example. Prove that the equation $x^3 + x - 1 = 0$ has exactly one real solution.



Theorem (Mean Value Theorem). Let f be a function that satisfies the following:

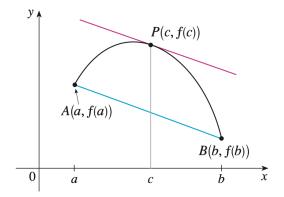
- 1. f is continuous on the closed interval [a, b].
- 2. f is differentiable on the open interval (a, b).

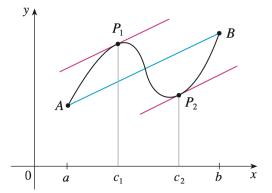
Then there exists a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

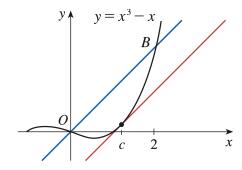
Equivalently,

$$f(b) - f(a) = f'(c)(b - a).$$





Example. Does the function $f(x) = x^3 - x$ satisfy the hypotheses of the Mean Value Theorem on the interval [0, 2]?



Theorem. If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

Proof.

1. Pick any two points $x_1 = x_2$ in _____. Goal: show $f(x_1) =$ ____.

2. Since f(x) is differentiable on (hence continuous) on (a, b), the MVT applies. So there exists c in _____ such that

f'(c) =_____ or $f(x_2) - f(x_1) =$ _____.

3. Hence:

$$f(x_2) - f(x_1) = \underline{\qquad} \cdot (x_2 - x_1) = \underline{\qquad},$$

hence $f(x_2) =$ _____.

4. Since x_1, x_2 were arbitrary, f has the same value at any two points of (a, b). Therefore f is ______ on _____.

Corollary. If f'(x) = g'(x) for all x in an interval (a, b), then f - g is constant on (a, b); that is, f(x) = g(x) + c where c is a constant.

Proof.

Example. For the function

$$f(x) = \frac{x}{|x|} = \begin{cases} 1, & \text{if } x > 0, \\ -1, & \text{if } x < 0. \end{cases}$$

f'(x) = 0 for all x in the domain. Why doesn't this contradict the theorem?

Example. Prove the identity $\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}$.