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4.2 The Mean Value Theorem  Detowr: Need MVT 4p prove desiced “‘““""5?

Theorem (Rolle’s Theorem). Let f be a function that satisfies the following:
1. f is continuous on the closed interval [a, b].
2. f is differentiable on the open interval (a,b).
3. f(a) = f(b).

Then there is a number ¢ in (a,b) such that f'(c) = 0.
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Example. If an object is in the same place at two different instants ¢t = a and ¢t = b, what does
Rolle’s Theorem say about the velocity of the object?
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Example. Prove that the equation 22 + 2z — 1 = 0 has exactly one real solution.
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Theorem (Mean Value Theorem). Let f be a function that satisfies the following:
1. f is continuous on the closed interval [a, b].
2. f is differentiable on the open interval (a,b).

Then there exists a number ¢ in (a, b) such that
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XF Example. Does the function f(z) = 2® — z satisfy the hypotheses of the Mean Value Theorem on

the interval [0, 2]?
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Example. What does the Mean Value Theorem say about velocity?
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Example. Suppose that f(0) = —3 and f’(x) < 5 for all values of z. How large can f(2) be?
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Theorem. If f/(z) =0 for all z in an interval (a,b), then f is constant on (a,b).

Proof.
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2. Since f(x) is differentiable on (hence continuous) on (a,b), the MVT applies. So there exists ¢
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4. Since x1,x9 were arbitrary, f has the same value at any two points of (a,b). Therefore f is
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Corollary. If f/(z) = ¢'(z) for all z in an interval (a,b), then f — g is constant on (a,b);
that is, f(x) = g(z) + ¢ where c is a constant.
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Example. For the function
x 1, if x >0,
ozl -1, itz <o,

f(x) =0 for all z in the domain. Why doesn’t this contradict the theorem?
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Example. Prove the identity tan=!(z) + cot~!(x) = g
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