
3.6 Inverse Trigonometric Functions and Their Derivatives

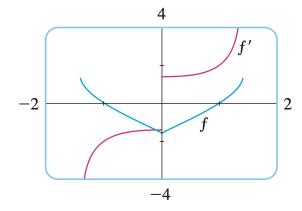
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2-1}},$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}, \qquad \frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}},$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}, \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}.$$

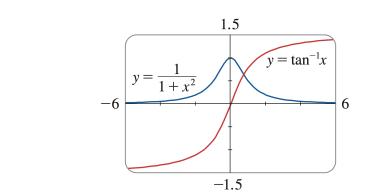
Question. What are the functions $\sin^{-1}(x)$, $\cos^{-1}(x)$, and $\tan^{-1}(x)$? What are the domains and ranges of these functions?

Example. Evaluate


- $(a) \sin^{-1}(\frac{1}{2})$
- (b) $\tan(\arcsin(\frac{1}{3}))$

Theorem. Show that $\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$.

Proof.


Example. If $f(x) = \sin^{-1}(x^2 - 1)$, find

- (a) The domain of f
- (b) The derivative f'
- (c) The domain of f'

Example. Differentiate $y = \cos^{-1}(e^{2x})$.

Theorem. Show that $\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}$. *Proof.*

Example. Differentiate $y = \frac{1}{\tan^{-1} x}$.

Example. Differentiate $y = x \arctan \sqrt{x}$.