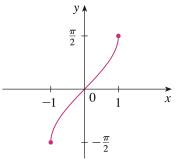
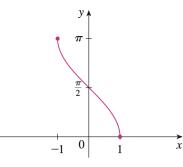
Inverse Trigonometric Functions and Their Derivatives

Need to Know
$$\begin{cases} \frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, & \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2-1}}, \\ \frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}, & \frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}, \\ \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}, & \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}. \end{cases}$$

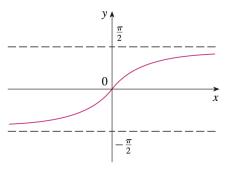
Question. What are the functions $\sin^{-1}(x)$, $\cos^{-1}(x)$, and $\tan^{-1}(x)$? What are the domains and It is ranges of these functions?



f(x) = arcsin(x)



f(x) = arccostx)



f(x) = arcten(x)

 $sin(\theta) = x$

input: a value x input: a value x in [-1,]

 $x = C\theta J \cos$

input: a value x (00,00-) ni

output: an angle 0 output: an angle 0 output: an angle 0 in [-五,五] with in (五,五) with x = Celont

Example. Evaluate

(a)
$$\sin^{-1}(\frac{1}{2})$$

(b)
$$\tan(\arcsin(\frac{1}{3}))$$

(a) We want an angle
$$\theta$$
 in $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ with $\sin(\theta) = \frac{1}{2}$

$$\sin(\frac{\pi}{6}) = \frac{1}{2} \text{ and } \frac{\pi}{6} \text{ is in } \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$$

$$\sin(\frac{\pi}{2}) = \frac{\pi}{6}$$

$$Sin(\theta) = \frac{1}{3}$$
 $\theta = \arcsin(\frac{1}{3})$ [because θ is in $[-\frac{\pi}{2}, \frac{\pi}{2}]$]

By Pythagorean Thm, $y = \sqrt{3^2 - 1^2} = 2\sqrt{2}$
 $tan(\arcsin(\frac{1}{3})) = tan(\theta) = \frac{1}{2\sqrt{2}}$ off

Theorem. Show that $\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$.

Proof.

Let
$$y = \sin^{-1}(x)$$

$$\Rightarrow \sin(y) = x$$

$$\Rightarrow \frac{d}{dx} \left[\sin(y) \right] = \frac{d}{dx} \left[x \right]$$

$$\Rightarrow \cos(y) \cdot \frac{dy}{dx} = 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\cos(y)} = \frac{1}{1 - \sin^2(y)} = \frac{1}{1 - x^2}$$

$$\cos^2(y) + \sin^2(y) = 1$$

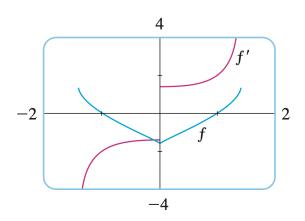
$$x = \sin(y)$$

2

Example. If $f(x) = \sin^{-1}(x^2 - 1)$, find

(a) The domain of
$$f \nearrow [-J\overline{z}, J\overline{z}]$$

- (b) The derivative f'
- (c) The domain of $f' \rightarrow (-5,0) \cup (0,5)$



$$\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}.$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$=\frac{1}{\sqrt{1-u^2}}\cdot 2x$$

$$= \frac{1}{\sqrt{1-(x^2-1)^2}} \cdot 2x$$

$$= \frac{1}{\sqrt{1-(x^4-2x^2+1)}} \cdot 2x$$

$$= \frac{2x}{\sqrt{2x^2 - x^4}}$$

Example. Differentiate $y = \cos^{-1}(e^{2x})$.

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}},$$

Let
$$y = \cos^2(x)$$
 $u = e^y$ $v = 2x$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} = -\frac{1}{\sqrt{1-u^2}} \cdot e^y \cdot 2$$

$$= -\frac{1}{\sqrt{1-(e^y)^2}} \cdot e^y \cdot 2$$

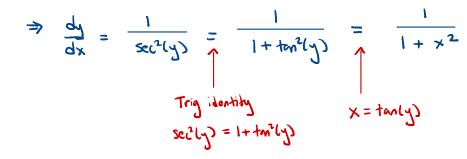
$$= -\frac{1}{\sqrt{1-(e^{2x})^2}} \cdot e^{2x} \cdot 2 = \frac{-2e^{2x}}{\sqrt{1-e^{4x}}}$$

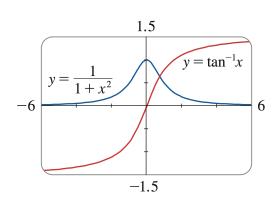
Theorem. Show that $\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}$.

Proof.

$$\Rightarrow \frac{d}{dx} \left[\tan(y) \right] = \frac{d}{dx} \left[x \right]$$

$$\Rightarrow$$
 $\sec^2(y) \cdot \frac{dy}{dx} = 1$





Example. Differentiate
$$y = \frac{1}{\tan^{-1} x}$$
. = (arctan(x))

 $y = u^{-1}$
 $u = \arctan(x)$

$$\frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2}.$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= -u^{-2} \cdot \frac{1}{1+x^2}$$

$$= -\left(\arctan(x)\right)^{-2} \cdot \frac{1}{1+x^2}$$

Example. Differentiate $y = x \arctan \sqrt{x}$.