3.6 Logarithmic Functions and Their Derivatives

$$\frac{d}{dx} (\log_b(x)) = \frac{1}{x \ln(b)}$$

Proof.

Let
$$y = \log_b(x)$$

$$\Rightarrow b^y = x \qquad [Def. of log]$$

$$\Rightarrow \frac{d}{dx}(b^y) = \frac{d}{dx}(x)$$

$$\Rightarrow b^y \cdot \ln(b) \cdot \frac{dy}{dx} = 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{x \cdot \ln(b)}$$

$$\frac{d}{dx}\big(\ln(x)\big) = \frac{1}{x}$$

Proof.

Since
$$\ln(x) = \log_e(x)$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x \cdot \ln(e)} = \frac{1}{x}$$

Example. Differentiate
$$y = \ln(x^3 + 1)$$
.

$$\frac{d}{dx} (\log_b(x)) = \frac{1}{x \ln(b)}$$

$$y = \ln(u)$$
 $u = x^3 + 1$

$$\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$$

$$= \frac{1}{u} \cdot 3x^{2}$$

$$= \frac{3x^{2}}{u}$$

In general, if we have a composition of functions, the chain rule looks like:

Leibniz Notation

Prime Notation

$$\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$$

$$\frac{d}{dx} \left[\ln g(x) \right] = \frac{g'(x)}{g(x)}$$

Example. Find $\frac{d}{dx}\ln(\sin x)$.

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= \frac{1}{u} \cdot \cos(x)$$

$$= \frac{\cos(x)}{\sin(x)}$$

Example. Differentiate $f(x) = \sqrt{\ln x}$

$$y = \sqrt{u} \qquad u = \ln(x)$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= \frac{1}{2} u^{-1/2} \cdot \frac{1}{x}$$

$$= \frac{1}{2} (\ln(x))^{-1/2} \cdot \frac{1}{x}$$

Example. Differentiate $f(x) = \log_{10}(2 + \sin x)$.

$$y = \log_{10}(u) \qquad u = 2 + \sin(x)$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= \frac{1}{u \cdot \ln(u)} \cdot \cos(x)$$

$$= \frac{\cos(x)}{(2 + \sin(x)) \ln(u)}$$

Example. Find $\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}}$.

You could start by using chain I quotient rules to get:

$$\frac{1}{\left(\frac{X+1}{\sqrt{X-2}}\right)} \cdot \frac{d}{dx} \left(\frac{X+1}{\sqrt{X-2}}\right)$$
 Is there a better way?

We can use properties of logs to simplify before differentiating

$$\log(a \cdot b) = \log(a) + \log(b)$$

$$\log(\frac{a}{b}) = \log(a) - \log(b)$$

$$\log(x^n) = n \cdot \log(x)$$

$$\frac{d}{dx}\left(\ln\left(\frac{x+1}{\sqrt{x-2}}\right)\right) = \frac{d}{dx}\left[\ln(x+1) - \frac{1}{2}\ln(x-2)\right]$$

$$= \frac{1}{x+1} - \frac{1}{2} \cdot \frac{1}{x-2}$$

Steps in Logarithmic Differentiation

- 1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws of Logarithms to expand the expression.
- 2. Differentiate implicitly with respect to x.
- 3. Solve the resulting equation for y' and replace y by f(x).

Example. Differentiate $y = \frac{x^{3/4}\sqrt{x^2+1}}{(3x+2)^5}$

$$\begin{aligned} & | h(y) = | h\left(\frac{x^{3/4} \sqrt{x^{2}+1}}{(3x+2)^{5}}\right) \\ & | h(y) = | h\left(x^{3/4}, \sqrt{x^{2}+1}\right) - | h\left((3x+2)^{5}\right) \end{aligned} \qquad \text{[Outtent Paperty]} \\ & | h(y) = | h\left(x^{3/4}\right) + | h\left((x^{2}+1)^{1/2}\right) - | h\left((3x+2)^{5}\right) \end{aligned} \qquad \text{[Power Paperty]} \\ & | h(y) = \frac{3}{4} | h(x) + \frac{1}{2} | h(x^{2}+1) - 5 | h(3x+2) \end{aligned} \qquad \text{[Power Paperty]} \\ & \frac{1}{y} \cdot \frac{dy}{dx} = \frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{1}{x^{2}+1} \cdot 2x - 5 \cdot \frac{1}{3x+2} \cdot 3$$

$$& \frac{dy}{dx} = y \left(\frac{3}{4x} + \frac{x}{x^{2}+1} - \frac{15}{3x+2}\right)$$

$$& \frac{dy}{dx} = \frac{x^{3/4} \sqrt{x^{2}+1}}{(3x+2)^{5}} \left(\frac{3}{4x} + \frac{x}{x^{2}+1} - \frac{15}{3x+2}\right)$$

Example. Differentiate $y = x^{\sqrt{x}}$.

$$\ln(y) = \ln(x^{\sqrt{x}}) = \sqrt{x} \cdot \ln(x)$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \sqrt{x} \cdot \frac{d}{dx} (\ln(x)) + \ln(x) \cdot \frac{d}{dx} (\sqrt{x})$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \sqrt{x} \cdot \frac{1}{x} + \ln(x) \cdot \frac{1}{2} x^{-1/2}$$

$$\frac{dy}{dx} = y \left(\frac{\sqrt{x}}{x} + \frac{\ln(x)}{2\sqrt{x}}\right)$$

$$\frac{dy}{dx} = x^{\sqrt{x}} \left(\frac{\sqrt{x}}{x} + \frac{\ln(x)}{2\sqrt{x}}\right)$$