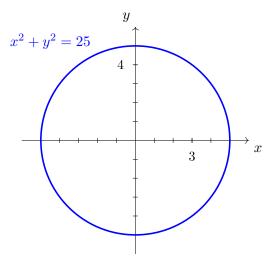
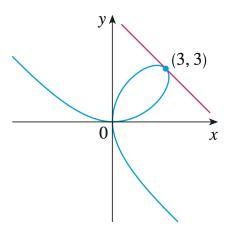

3.5 Implicit Differentiation

Question. What is the difference between a function and a relation?


Implicit Differentiation: When y is not explicitly written as a function of x, we can still find the slope $\frac{dy}{dx}$ by differentiating both sides with respect to x and using the Chain Rule. We view y as an unknown function y(x).

- 1. Start from the relation. Write the given equation relating the variables x and y.
- 2. Differentiate both sides with respect to x. Apply derivative rules as needed. Every time you differentiate a term involving y, multiply by a factor $y' = \frac{dy}{dx}$ via the Chain Rule.
- 3. Collect y'-terms. Move all terms containing y' to one side and all other terms to the opposite side.
- 4. Factor and solve for y'. Factor out y' and isolate it to obtain an explicit formula $y' = \frac{dy}{dx}$ in terms of x and y.

1


Example.

- (a) If $x^2 + y^2 = 25$, find $\frac{dy}{dx}$.
- (b) Find an equation of the tangent line to the circle $x^2 + y^2 = 25$ at the point (3,4).

Example.

- (a) Find y' if $x^3 + y^3 = 6xy$
- (b) Find an equation of the tangent line to the folium of Descartes $x^3 + y^3 = 6xy$ at the point (3,3)

Example. Find y' if $\sin(x+y) = y^2 \cos(x)$.

Example. Find y' if $x^4 + y^4 = 16$.