3.4 The Chain Rule

Theorem. If u = g(x) is differentiable at x and y = f(u) is differentiable at g(x), then the composite function $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at x, and F' is given by the product:

Prime Notation

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

$$F'(x) = f'(g(x)) g'(x)$$

Example. Find F'(x) if $F(x) = \sqrt{x^2 + 1}$.

Example. Differentiate $y = \sin(x^2)$.

Example. Differentiate $y = \sin^2(x)$.

Example. Differentiate $y = (x^3 - 1)^{100}$

Example. Find f'(x) if $f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$.

Example. Find the derivative of the function $g(t) = \left(\frac{t-2}{2t+1}\right)^9$

Example. Differentiate $y = (2x+1)^5(x^3-x+1)^4$

Example. Differentiate $y = e^{\sin x}$

Example. Differentiate $f(x) = \sin(\cos(\tan x))$.

Example. Differentiate $y = e^{\sec 3\theta}$.

Theorem. Let a > 0 with $a \neq 1$. Then

$$\frac{d}{dx}(a^x) = a^x \ln a.$$

Proof.

Example. Differentiate $g(x) = 2^x$

Example. Differentiate $g(x) = 5^{x^2}$