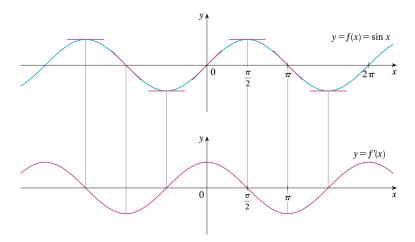
3.3 Derivatives of Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cos x) = -\sin x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

Proof. Let f(x) be $\sin x$. We will show that $f'(x) = \cos x$.



$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{h}{h}$$

$$= \lim_{h \to 0} \frac{h}{h}$$

$$= \lim_{h \to 0} \left[\frac{h}{h} + \frac{h}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{h}{h} + \frac{h}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{h}{h} + \frac{h}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{h}{h} + \frac{h}{h} + \frac{h}{h} \right]$$

Example. Differentiate $y = x^2 \sin(x)$.

Proof. Let f(x) be tan(x). We will show that $f'(x) = sec^2(x)$.

$$\frac{d}{dx}(\tan x) = \frac{d}{dx}(-----)$$

$$=\frac{()\cdot\frac{d}{dx}()-()\cdot\frac{d}{dx}()}{(\cos x)^2}$$

$$=\frac{1}{\cos^2 x}$$

$$=$$
 $\cos^2 x$

$$=\frac{}{\cos^2 x}$$

$$= \sec^2 x.$$

Example. For what values of x does the graph of $f(x) = \frac{\sec(x)}{1 + \tan(x)}$ have a horizontal tangent?

$$f'(x) = \frac{\left(\right) \frac{d}{dx} \left(\right) - \left(\right) \frac{d}{dx} \left(\right)}{\left(1 + \tan x \right)^2}$$

$$=\frac{\left(1+\tan x\right)\cdot \qquad -\sec x\cdot}{\left(1+\tan x\right)^2}$$

$$=\frac{\sec x(}{(1+\tan x)^2}$$

$$=\frac{\sec x(\frac{1+\tan x})^2}{(1+\tan x)^2}$$

$$=\frac{\sec x \left(\tan x + \tan^2 x - \left(\frac{1 + \tan x}{2}\right)\right)}{\left(1 + \tan x\right)^2}$$

$$= \frac{1}{\left(1 + \tan x\right)^2}.$$

Example. Find the 27th derivative of cos(x).

Example. An object at the end of a vertical spring is stretched 4 cm beyond its rest position and released at time t = 0. Its position at time t is $s = f(t) = 4\cos t$. Find the velocity and acceleration at time t and use them to analyze the motion of the object.

