
3.3 Derivatives of Trigonometric Functions

Theorem.
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(cotx) =− csc2 x
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(cscx)=− cscx cotx

Proof. Let f(x) be sinx. We will show that f ′(x) = cosx.
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Example. Differentiate y = x2 sin(x).

Proof. Let f(x) be tan(x). We will show that f ′(x) = sec2(x).
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Example. For what values of x does the graph of f(x) =
sec(x)

1 + tan(x)
have a horizontal tangent?
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Example. Find the 27th derivative of cos(x).

Example. An object at the end of a vertical spring is stretched 4 cm beyond its rest position and
released at time t = 0. Its position at time t is s = f(t) = 4 cos t. Find the velocity and acceleration
at time t and use them to analyze the motion of the object.
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