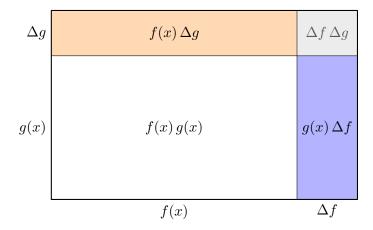
The Product and Quotient Rules 3.2

Theorem (Product Rule). If f and g are both differentiable, then their derivatives satisfy:


Leibniz Notation

Prime Notation

$$\frac{d}{dx}\big[f(x)g(x)\big] \ = \ f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x) \qquad \qquad (fg)'(x) \ = \ f(x)g'(x) + g(x)f'(x)$$

$$(fg)'(x) = f(x)g'(x) + g(x)f'(x)$$

Proof #1: Using Geometry.

Proof #2: Using the Limit Definition of the Derivative.

Let A(x) = f(x)g(x). Then

$$A'(x) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \left(f(x+h) \frac{g(x+h) - g(x)}{h} + g(x) \frac{f(x+h) - f(x)}{h} \right)$$

$$= \lim_{h \to 0} f(x+h) \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} + \lim_{h \to 0} g(x) \cdot \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= f(x) g'(x) + g(x) f'(x).$$

Note: $f(x+h) \to f(x)$ as $h \to 0$, since f is differentiable, and therefore continuous, at x.

Example. If $f(x) = xe^x$, find f'(x). What is the *n*th derivative $f^{(n)}(x)$?

Example. Differentiate the function $f(t) = \sqrt{t} \cdot (5 + 8t)$.

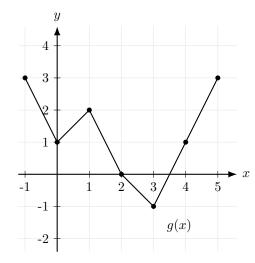
Example. If $f(x) = \sqrt{x} \cdot g(x)$, where g(4) = 2 and g'(4) = 3, find f'(4).

Theorem (Quotient Rule). If f and g are differentiable at x and $g(x) \neq 0$, then their derivatives satisfy:

Leibniz Notation

Prime Notation

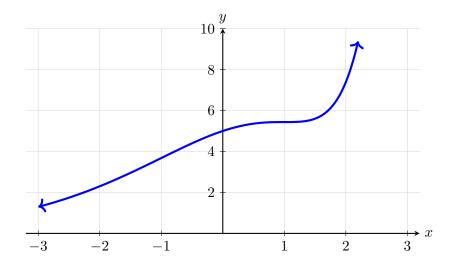
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{\left(g(x) \right)^2} \qquad \left(\frac{f}{g} \right)'(x) = \frac{f'(x) g(x) - f(x) g'(x)}{\left(g(x) \right)^2}$$


Example. Let $y = \frac{x^2 + x - 2}{x^3 + 6}$. What is y'?

Example. Find an equation of the tangent line to the curve $y = \frac{e^x}{1+x^2}$ at the point $(1, \frac{1}{2}e)$.

Example. Should we use the quotient rule to differentiate $F(x) = \frac{3x^2 + 2\sqrt{x}}{x}$?

Example. A table of values for f(x) and f'(x) and a graph of a piecewise linear function g(x) are shown below.


x	f(x)	f'(x)
-1	5	-1
0	-2	4
1	0	3
2	7	-2
3	9	5
4	3	1

- (a) Let p(x) = f(x) g(x). Find p'(1) and p'(2).
- (b) Let $q(x) = \frac{g(x)}{f(x) + 1}$. Find q'(4).

Example. Use the function $f(x) = (x^2 - 4x + 5)e^x$ to answer:

- (a) On which interval(s) is f(x) increasing?
- (b) On which interval(s) is f(x) concave upward?

Example. Compute f'(1), where $f(x) = \frac{4x^2}{\sqrt{x}e^x}$.