3.1 Derivatives of Polynomials and Exponential Functions

Definition. With respect to the variable x, the symbol
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dx

means “take the derivative with respect to x.” It is an operator that takes a function f as
input and produces the derivative function as output. The functions
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all denote the same derivative function. If y = f(z), then
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In contexts where the independent variable is time t, one often uses Newton’s dot notation:
. dy . dPy
YSa VT a

The second and nth derivatives can be written as
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Example. What is dx(c). What is T (x)



Theorem (Power Rule). If n is any real number, then
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Example. If f(z) = 25, what is f/(z)?

1000

Example. If y = 2'°%°, what is y/?

d
Example. If y = t*, what is d—:g?

Example. What is di(r?’)?
T
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Example. What is di (Vx)?
x
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Example. Differentiate f(z) = —.
x

Example. Differentiate y = v/x2.



Example. Find an equation of the tangent line to the curve y = x+/z at the point (1,1).

Theorem (Constant Multiple Rule). If ¢ is a constant and f is a differentiable function,
then
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Geometric Interpretation: Multiplying by ¢ = 2
stretches the graph vertically by a factor of 2. All
the rises have been doubled but the runs stay the //_\ y=fx)

same. So the slopes are also doubled.

Example.

e What is % (3374)?

d
What is — (—x)7
o alsdx(a:)



Theorem (Sum and Difference Rules). If f and g are both differentiable, then their deriva-
tives satisfy:

Leibniz Notation Prime Notation
2 [f(@) + (@) = = F(@) + glo) (f+9)(@) = @) +9()
2 {f(@) ~ (@) = = F(@) ~ gla) (f-9/(@) = =) - (@)

Proof. To prove the Sum Rule, we let F(z) = f(z) + g(z). Then
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= f'(@)+4(2).
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Example. What is d—(xS +122° — 42* + 1023 — 62 + 5)?
X



Example. Where does the curve y = 2% — 622 + 4 have horizontal tangent lines?

YA
0, 4)
0 x

(=V3,-5) (v3,-5)

Example. The equation of motion of a particle is s = 2t3 — 5t% + 3t + 4, where s is measured in
centimeters and ¢ in seconds. Find the acceleration as a function of time. What is the acceleration
after 2 seconds?



Definition. The number e is the unique base of the exponential function for which the
derivative at x = 0 is 1:

It follows that e is the base for which the exponential function is its own derivative:
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Numerically, e ~ 2.71828.

Consider the general exponential function f(z) = b*. Using the definition of the derivative,
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Thus f/(z) = b* - f/(0). Numerical evidence shows:

£1(0) ~ for b =2,

1'(0) ~ for b = 3.

There must be some base b between 2 and 3 for which f’(0) = 1. We denote this special base by e.




Example. If f(z) =e® — x, find f" and f”.

Example. At what point on the curve y = e* is the tangent line parallel to the line y = 227
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