3.1 Derivatives of Polynomials and Exponential Functions

Definition. With respect to the variable x, the symbol

$$\frac{d}{dx}$$

means "take the derivative with respect to x." It is an operator that takes a function f as input and produces the derivative function as output. The functions

$$\underbrace{\frac{d}{dx}[f(x)]}_{\text{operator on }f} = \underbrace{\frac{f'(x)}{Lagrange}}_{\text{Lagrange}} = \underbrace{\frac{df}{dx}}_{\text{Leibniz}}$$

all denote the same derivative function. If y = f(x), then

$$\frac{dy}{dx} = f'(x) = \frac{d}{dx} [f(x)].$$

In contexts where the independent variable is time t, one often uses Newton's dot notation:

$$\dot{y} = \frac{dy}{dt}, \qquad \ddot{y} = \frac{d^2y}{dt^2}.$$

The second and nth derivatives can be written as

$$f''(x) = \frac{d^2 f}{dx^2} = \frac{d^2}{dx^2} [f(x)]$$
 $f^{(n)}(x) = \frac{d^n f}{dx^n} = \frac{d^n}{dx^n} [f(x)]$

Example. What is $\frac{d}{dx}(c)$? What is $\frac{d}{dx}(x)$?

Theorem (Power Rule). If n is any real number, then

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}.$$

Example. If
$$f(x) = x^6$$
, what is $f'(x)$?

Example. If
$$y = x^{1000}$$
, what is y' ?

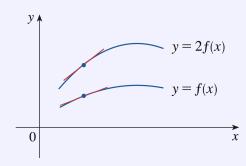
Example. If
$$y = t^4$$
, what is $\frac{dy}{dt}$?

Example. What is
$$\frac{d}{dr}(r^3)$$
?

Example. What is
$$\frac{d}{dx} \left(\frac{1}{x} \right)$$
?

Example. What is
$$\frac{d}{dx}(\sqrt{x})$$
?

Example. Differentiate
$$f(x) = \frac{1}{x^2}$$
.


Example. Differentiate
$$y = \sqrt[3]{x^2}$$
.

Example. Find an equation of the tangent line to the curve $y = x\sqrt{x}$ at the point (1,1).

Theorem (Constant Multiple Rule). If c is a constant and f is a differentiable function, then

$$\frac{d}{dx} [cf(x)] = c \frac{d}{dx} f(x).$$

Geometric Interpretation: Multiplying by c=2 stretches the graph vertically by a factor of 2. All the rises have been doubled but the runs stay the same. So the slopes are also doubled.

Example.

- What is $\frac{d}{dx}(3x^4)$?
- What is $\frac{d}{dx}(-x)$?

Theorem (Sum and Difference Rules). If f and g are both differentiable, then their derivatives satisfy:

Leibniz Notation

Prime Notation

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

$$(f+g)'(x) = f'(x) + g'(x)$$

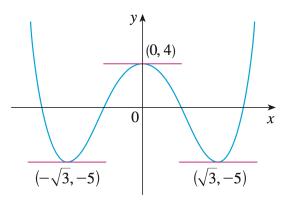
$$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

$$(f-g)'(x) = f'(x) - g'(x)$$

Proof. To prove the Sum Rule, we let F(x) = f(x) + g(x). Then

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$\lim_{h \to 0}$$

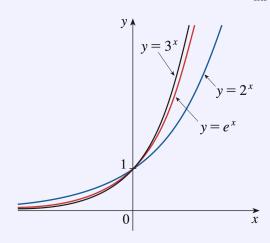

$$= \lim_{h \to 0} \left[\frac{}{h} + \frac{}{h} \right]$$

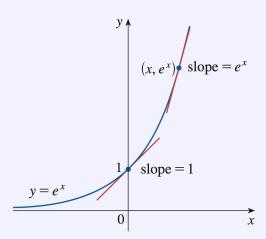
$$=\lim_{h o 0} \frac{}{} + \lim_{h o 0} \frac{}{}$$

$$= f'(x) + g'(x).$$

Example. What is $\frac{d}{dx}(x^8 + 12x^5 - 4x^4 + 10x^3 - 6x + 5)$?

Example. Where does the curve $y = x^4 - 6x^2 + 4$ have horizontal tangent lines?


Example. The equation of motion of a particle is $s = 2t^3 - 5t^2 + 3t + 4$, where s is measured in centimeters and t in seconds. Find the acceleration as a function of time. What is the acceleration after 2 seconds?


Definition. The number e is the unique base of the exponential function for which the derivative at x = 0 is 1:

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1.$$

It follows that e is the base for which the exponential function is its own derivative:

$$\frac{d}{dx}(e^x) = e^x.$$

Numerically, $e \approx 2.71828$.

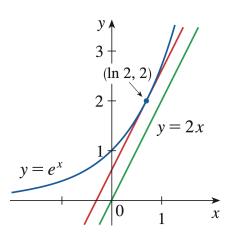
Consider the general exponential function $f(x) = b^x$. Using the definition of the derivative,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{1}{h}$$

Thus $f'(x) = b^x \cdot f'(0)$. Numerical evidence shows:


$$f'(0) \approx$$
 for $b = 2$,

$$f'(0) \approx$$
 for $b = 3$.

There must be some base b between 2 and 3 for which f'(0) = 1. We denote this special base by e.

Example. If $f(x) = e^x - x$, find f' and f''.

Example. At what point on the curve $y = e^x$ is the tangent line parallel to the line y = 2x?

