Derivatives of Polynomials and Exponential Functions

Definition. With respect to the variable x, the symbol

$$\frac{d}{dx}$$

means "take the derivative with respect to x." It is an operator that takes a function f as input and produces the derivative function as output. The functions

$$\underbrace{\frac{d}{dx}[f(x)]}_{\text{operator on }f} = \underbrace{f'(x)}_{\text{Lagrange}} = \underbrace{\frac{df}{dx}}_{\text{Leibniz}}$$

all denote the same derivative function. If y = f(x), then

$$\frac{dy}{dx} = f'(x) = \frac{d}{dx} [f(x)].$$

In contexts where the independent variable is time t, one often uses Newton's dot notation:

$$\dot{y} = \frac{dy}{dt}, \qquad \ddot{y} = \frac{d^2y}{dt^2}.$$

The second and nth derivatives can be written as

$$f''(x) = \frac{d^2 f}{dx^2} = \frac{d^2}{dx^2} [f(x)]$$
 $f^{(n)}(x) = \frac{d^n f}{dx^n} = \frac{d^n}{dx^n} [f(x)]$

Example. What is $\frac{d}{dx}(c)$? What is $\frac{d}{dx}(x)$?

Constant functions have slope
$$0: \frac{d}{dx}(c) = 0$$

 $f(x) = x$ has slope $1: \frac{d}{dx}(x) = 1$

$$f(x) = x$$
 has slope 1: $\frac{d}{dx}(x) = 1$

Theorem (Power Rule). If n is any real number, then

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}.$$

Example. If $f(x) = x^6$, what is f'(x)?

Example. If $y = x^{1000}$, what is y'?

Example. If $y = t^4$, what is $\frac{dy}{dt}$?

Example. What is $\frac{d}{dr}(r^3)$?

Example. What is $\frac{d}{dx} \left(\frac{1}{x} \right)$?

$$\frac{1}{x} = x$$

$$-1.\chi^{-2} = \boxed{\frac{-1}{\chi^2}}$$

Example. What is $\frac{d}{dx}(\sqrt{x})$?

$$T_X = x^{1/2}$$

$$\frac{1}{2} \cdot \chi^{-1/2} = \boxed{\frac{1}{2\sqrt{2}}}$$

Example. Differentiate $f(x) = \frac{1}{x^2}$.

$$\frac{1}{X^2} = X^{-2}$$

$$-2 \cdot x^{-3} = \boxed{\frac{-2}{x^3}}$$

Example. Differentiate $y = \sqrt[3]{x^2}$.

$$3\sqrt{x^2} = x^{2/3}$$

$$\frac{2}{3} \times^{-1|_3} = \boxed{\frac{2}{3\sqrt[3]{\times}}}$$

Example. Find an equation of the tangent line to the curve $y = x\sqrt{x}$ at the point (1,1).

Slope at (1,1):

Since
$$y = x \sqrt{x} = x \cdot x^{1/2} = x^{3/2}$$

$$y' = \frac{3}{2} x^{1/2}$$
 (by the power role)

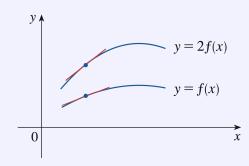
When
$$x=1$$
, $y'=\frac{3}{2}(1)^{1/2}=\frac{3}{2}$

Using point-slope, the equation of the tangent line is $y-1=\frac{3}{2}(x-1)$

Theorem (Constant Multiple Rule). If c is a constant and f is a differentiable function, then

$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$$

Geometric Interpretation: Multiplying by c=2 stretches the graph vertically by a factor of 2. All the rises have been doubled but the runs stay the same. So the slopes are also doubled.



Example.

• What is
$$\frac{d}{dx}(3x^4)$$
? = $3 \cdot \frac{d}{dx}(x^4) = 3 \cdot (4x^3) = 12x^3$

• What is
$$\frac{d}{dx}(-x)$$
? $= -1 \cdot \frac{d}{dx}(x) = -1 \cdot (1) = -1$

Theorem (Sum and Difference Rules). If f and g are both differentiable, then their deriva-

Leibniz Notation

Prime Notation

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

$$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

$$(f+g)'(x) = f'(x) + g'(x)$$

$$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

$$(f-g)'(x) = f'(x) - g'(x)$$

Proof. To prove the Sum Rule, we let F(x) = f(x) + g(x). Then

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{\left[f(x+h) + g(x+h) \right] - \left[f(x) + g(x) \right]}{h}$$

the sum
$$= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right]$$
 for limits
$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x).$$

Example. What is $\frac{d}{dx}(x^8 + 12x^5 - 4x^4 + 10x^3 - 6x + 5)$?

$$= \frac{d}{dx}(x^8) + 12\frac{d}{dx}(x^5) - 4\frac{d}{dx}(x^4) + 10\frac{d}{dx}(x^3) - 6\frac{d}{dx}(x) + \frac{d}{dx}(5)$$

$$= 8x^{7} + 60x^{4} - 16x^{3} + 30x^{2} - 6$$

Example. Where does the curve $y = x^4 - 6x^2 + 4$ have horizontal tangent lines?

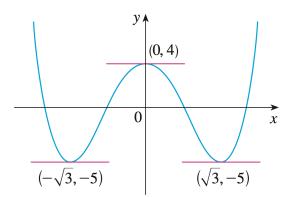
Solve for where the derivative is O

$$y' = 4x^3 - 12x$$

$$\Rightarrow$$
 $4x^3 - 12x = 0$

$$\Rightarrow 4x(x^2-3)=0$$

$$\Rightarrow$$
 $x=0$ or $x=\pm \sqrt{3}$



Plug these values back into $y = x^4 - 6x^2 + 4$ to get the y-coords.

(distance function)

Example. The equation of motion of a particle is $s = 2t^3 - 5t^2 + 3t + 4$, where s is measured in centimeters and t in seconds. Find the acceleration as a function of time. What is the acceleration after 2 seconds?

$$S(t) = 2t^3 - 5t^2 + 3t + 4$$

$$\frac{ds}{dt} = V(t) = 6t^2 - 10t + 3$$

$$\frac{d^2s}{dt^2} = a(t) = 12t - 10$$

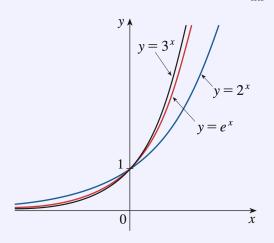
when
$$t=2$$
, $a(2) = 24 - 10 = 14 \text{ cm/s}^2$
(velocity is cm/s, acceleration is $\frac{\text{cm/s}}{\text{s}}$)

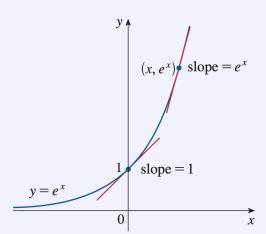
Definition. The number e is the unique base of the exponential function for which the derivative at x = 0 is 1:

$$\lim_{h\to 0} \frac{e^h - 1}{h} = 1.$$
 The derivative of e^{x} at 0 is 1

It follows that e is the base for which the exponential function is its own derivative:

$$\frac{d}{dx}(e^x) = e^x.$$





Numerically, $e \approx 2.71828$.

Consider the general exponential function $f(x) = b^x$. Using the definition of the derivative,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{b^{x+h} - b^{x}}{h} = \lim_{h \to 0} \frac{b^{x}b^{h} - b^{x}}{h}$$

$$= \lim_{h \to 0} \frac{b^{x}(b^{h} - b^{x})}{h}$$

$$= \lim_{h \to 0} \frac{b^{x}(b^{h} - b^{x})}{h}$$

$$= b^{x} \left(\lim_{h \to 0} \frac{b^{h} - b^{x}}{h}\right)$$
This is f'(o)

Thus $f'(x) = b^x \cdot f'(0)$. Numerical evidence shows:

$$f'(0) \approx 0.613$$
 for $b = 2$,

$$f'(0) \approx 1.099$$
 for $b = 3$.

There must be some base b between 2 and 3 for which f'(0) = 1. We denote this special base by e.

Example. If $f(x) = e^x - x$, find f' and f''.

$$f'(x) = \frac{d}{dx} \left(e^{x} - x \right) = \frac{d}{dx} \left(e^{x} \right) - \frac{d}{dx} \left(x \right) = \boxed{e^{x} - 1}$$

$$f''(x) = \frac{d}{dx}(e^{x}-1) = \frac{d}{dx}(e^{x}) - \frac{d}{dx}(1) = e^{x}$$

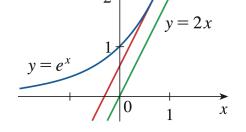
Example. At what point on the curve $y = e^x$ is the tangent line parallel to the line y = 2x?

Goal: Find x where y' = 2

(so the tangent line has the same slope as y=2x)

 $y' = e^{x}$ \Rightarrow $e^{x} = 2$

 \Rightarrow $x = \ln 2$



Point: $(\ln 2, e^{\ln 2}) = (\ln 2, 2)$