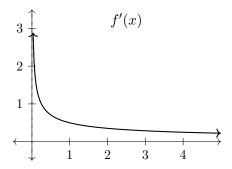

## 2.8 The Derivative as a Function

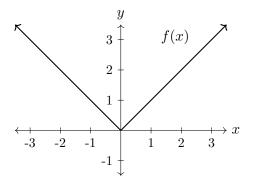
**Definition.** The derivative of a function f at a number x is defined by

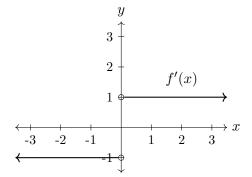
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$


provided this limit exists. The value of f' at x, namely f'(x), can be interpreted geometrically as the slope of the tangent line to the graph of f at the point (x, f(x)).

**Example.** Below is the graph of a function f(x). Sketch the graph of the derivative f'(x).

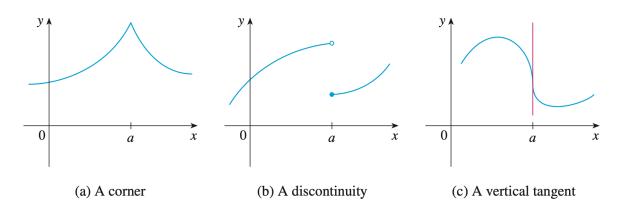



**Example.** If  $f(x) = \sqrt{x}$ , find the derivative of f. What is the domain of f'?






**Definition.** A function f is differentiable at a if f'(a) exists. It is differentiable on an open interval (a,b) [or  $(a,\infty)$ , or  $(-\infty,a)$ , or  $(-\infty,\infty)$ ] if it is differentiable at every number in the interval.


**Example.** Where is the function f(x) = |x| differentiable?





**Theorem.** What can we say if f is differentiable at a?

Question. How can a function fail to be differentiable?

