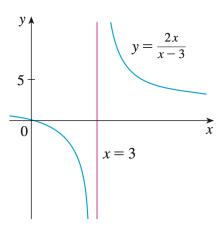
2.6 Limits at Infinity & Horizontal Asymptotes

Definition. The vertical line x = a is called a **vertical asymptote** of the curve y = f(x) if at least one of the following is true:

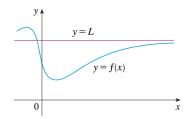

$$\lim_{x \to a} f(x) = \infty$$
$$\lim_{x \to a} f(x) = -\infty$$

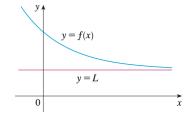
$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

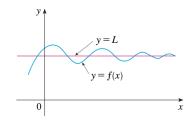
$$\lim_{x \to a^+} f(x) = \infty$$
$$\lim_{x \to a^+} f(x) = -\infty$$

Example. Find $\lim_{x\to 3^+} \frac{2x}{x-3}$ and $\lim_{x\to 3^-} \frac{2x}{x-3}$

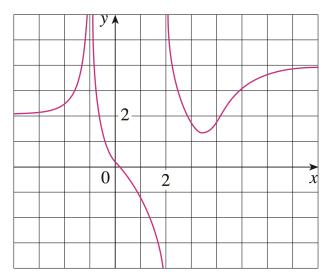



Definition. The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L.$$


This means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large in either the positive or negative direction.

Example. Here are some examples of horizontal asymptotes



1

Example. Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown below

Example. Find $\lim_{x\to\infty}\frac{1}{x}$ and $\lim_{x\to-\infty}\frac{1}{x}$

Remark. What can we say about $\frac{1}{x^n}$?

Example. Evaluate $\lim_{x\to\infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$

Example. Compute $\lim_{x\to\infty} (\sqrt{x^2+1}-x)$

Example. Show that $\lim_{x\to -\infty}e^x=0$. Then find $\lim_{x\to 0^-}e^{1/x}$.

Example. Evaluate $\lim_{x\to\infty} \sin x$.

Example. Find $\lim_{x\to\infty} \frac{x^2+x}{3-x}$.