2.6 Limits at Infinity & Horizontal Asymptotes

Definition. The vertical line x = a is called a **vertical asymptote** of the curve y = f(x) if at least one of the following is true:

$$\lim_{x \to a} f(x) = \infty$$
$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

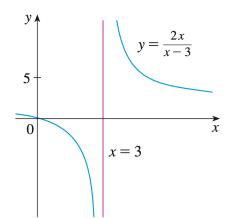
$$\lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a^{+}} f(x) = -\infty$$

Example. Find $\lim_{x\to 3^+} \frac{2x}{x-3}$ and $\lim_{x\to 3^-} \frac{2x}{x-3}$

$$\lim_{X \to 3^+} \frac{2^{\times}}{x - 3} = \infty$$

$$\lim_{X \to 3^{-}} \frac{2x}{x-3} = -\infty$$

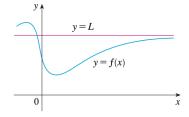


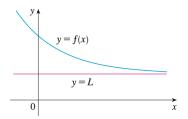
Definition. The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

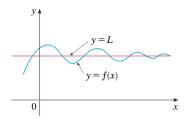
$$\lim_{x \to \infty} f(x) = L$$
 or $\lim_{x \to -\infty} f(x) = L$.

This means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large in either the positive or negative direction.

Example. Here are some examples of horizontal asymptotes







In all three cases, $\lim_{x\to\infty} f(x) = L$

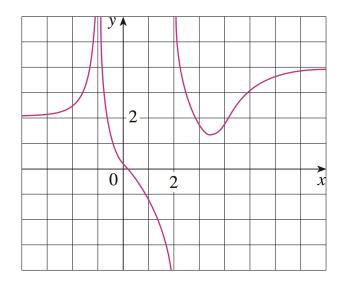
Example. Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown below

Vertical Asymptotes:

$$X=-1$$
 because $\lim_{x\to -1} f(x) = \infty$

$$x=2$$
 because $\lim_{x\to 2^+} f(x) = \infty$

$$\lim_{x\to 2^-} f(x) = -\infty$$



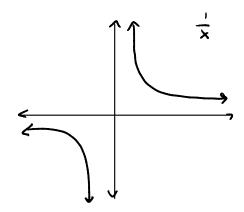
Horizonal Asymptotes:

$$y=2$$
 because $\lim_{x\to-\infty} f(x) = 2$

Example. Find $\lim_{x\to\infty}\frac{1}{x}$ and $\lim_{x\to-\infty}\frac{1}{x}$

$$\int_{M} \frac{x}{1} = 0$$

$$\lim_{x\to -\infty} \frac{1}{x} = 0$$



Remark. What can we say about $\frac{1}{x^n}$?

$$\lim_{x\to\infty}\frac{1}{x^n}=0$$

$$\lim_{X \to \infty} \frac{1}{x^n} = 0$$

$$\lim_{X \to -\infty} \frac{1}{x^n} = 0$$

Example. Evaluate
$$\lim_{x\to\infty} \frac{3x^2-x-2}{5x^2+4x+1}$$
 This
$$\lim_{x\to\infty} \frac{3x^2-x-2}{5x^2+4x+1} \cdot \left(\frac{1/x^2}{1/x^2}\right) = \lim_{x\to\infty} \frac{3-\frac{x}{x}-\frac{2}{x^2}}{5+\frac{4}{x}+\frac{2}{x^2}}$$
to 0 as $x\to\infty$

Using the sum) quotient laws for limits
$$= \frac{3-0-0}{5+0+0} = \frac{3}{5}$$
(I chose $1/x^2$ because 2
is the highest power appearing)
in the denominator

Example. Compute $\lim_{x\to\infty} (\sqrt{x^2+1}-x)$

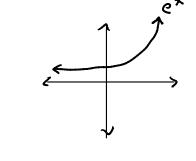
WRONG:
$$\lim_{x\to\infty} \sqrt{x^2+1} - \lim_{x\to\infty} x = \infty - \infty = 0$$
 X

(To use the difference law, both limits need to exist)

$$\lim_{x\to\infty} \left(\sqrt{\chi^2 + 1} - x \right) \cdot \left(\frac{\sqrt{\chi^2 + 1} + x}{\sqrt{\chi^2 + 1} + x} \right) \neq \text{This is } \mathbf{1}$$

$$= \lim_{X \to \infty} \frac{X^2 + 1 - X^2}{\sqrt{X^2 + 1} + X} = \lim_{X \to \infty} \frac{1}{\sqrt{X^2 + 1} + X} = 0$$

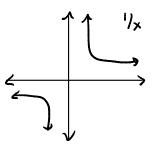
Example. Show that $\lim_{x\to -\infty} e^x = 0$. Then find $\lim_{x\to 0^-} e^{1/x}$.



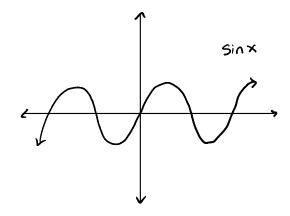
2 Substitute
$$t = \frac{1}{x}$$

As $x \to 0^-$, $t \to -\infty$

$$\lim_{x \to 0^-} e^{1/x} = \lim_{x \to -\infty} e^{t} = 0$$



Example. Evaluate $\lim_{x\to\infty} \sin x$.



The gaph oscillates back and forth forever and doesn't approach anything

lim sinx = D.N.E. X-> 20

Example. Find $\lim_{x\to\infty} \frac{x^2+x}{3-x}$.

Evaluating lim of Rational Functions:

① If the largest power is an top $\rightarrow \pm \infty$

2) If powers are the same -> ratio of coefficients

 $\lim_{x\to\infty} \frac{x^2+x}{3-x} \cdot \left(\frac{1/x}{1/x}\right)$

(3) If the largest power is on bottom -> 0

$$\frac{x \to \infty}{x \to 0} \frac{\frac{x}{x} - 1}{\frac{x}{x \to 0}}$$

= $\lim_{x\to\infty} \frac{x+1}{\frac{3}{x}-1}$ the bottom goes to -1

$$\frac{x^2+x}{3-x}$$