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Definition. A function f is continuous at a number a if

lim f(z) = f(a)
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Example. Where is f discontinuous?
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Definition. What are the different types of discontinuities?
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Definition. A function f is continuous from the right at a number a if

lim f(z) = f(a).
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and f is continuous from the left at a if

lim_f(z) = f(a).
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Example. At each integer n, is this function continuous from the left? Is it continuous from the
right?
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Definition. A function f is continuous on an interval if it is continuous at every number in
the interval. If f is defined only on one side of an endpoint of the interval, we understand
continuous at the endpoint to mean continuous from the right or continuous from the left.

Example. Show that the function f(z) =1 — /1 — 22 is continuous on the interval [—1, 1].
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Remark. Instead of always using the definition to verify the continuity of a function, it’s convenient
to build up complicated continuous functions from simple ones.

Theorem. If f and g are continuous at a and ¢ is a constant, then the following functions
are also continuous at a:
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Question. Why is any polynomial continuous on (—o0, 00)? /
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Theorem. The following types of functions are continuous at every number in their domains:

e polynomials e inverse trigonometric functions
e rational functions e exponential functions
e root functions e logarithmic functions

e trigonometric functions
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Example. Where is the function f(x) = 27—’_1 continuous?
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Theorem. If f is continuous at b and lim g(z) = b, then
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lim f(g(x)) = f( lim g(2) ) = F(b).
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Corollary. If g is continuous at a and f is continuous at g(a), then f(g(x)) is continuous
at a.

) . Q)
Example. Where is h(x) = sin(2?) continuous? L here B & Cuvnpo&l-\-po/\ caninuos -
367\3‘-‘ x¥ B Conhnucus sn  (—90,20)

LON = Sinlx) B continusus  oN (~o0,00)

h GO = 'p(ﬂb‘)B = Sinl(xr) B alo conhausuy on (-2. 20)

Example. Where is F(x) = In(1 + cosx) continuous?
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Theorem (Intermediate Value Theorem). Suppose that f is continuous on the closed interval
[a,b] and let N be any number between f(a) and f(b), where f(a) # f(b). Then there exists
a number ¢ € (a,b) such that f(c) = N.
YA
fla)
y = f(x)
N y=N
fb) \
0 a b X
Remark. Why did the chicken cross the road?
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Example. Show that there is a root of the equation
£(x) = 42 — 622+ 32 —2=0

between 1 and 2.
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