2.3 Calculating Limits Using the Limit Laws

Theorem. Suppose c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then:

1. $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$.

Sum Law

2. $\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$.

Difference Law

3. $\lim_{x \to a} (c f(x)) = c \lim_{x \to a} f(x).$

Constant Multiple Law

 $4. \ \lim_{x \to a} \bigl(f(x) \, g(x) \bigr) \ = \ \Bigl(\lim_{x \to a} f(x) \Bigr) \cdot \Bigl(\lim_{x \to a} g(x) \Bigr).$

Product Law

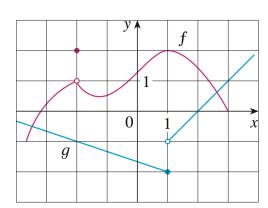
5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0.$

Quotient Law

Remark. All of these hold for one-sided limits as well.

Example. Use the Limit Laws and the graphs of f and g to evaluate the following limits.

 $\bullet \lim_{x \to -2} [f(x) + 5g(x)]$



• $\lim_{x \to 1} [f(x)g(x)]$

 $\bullet \lim_{x \to 2} \frac{f(x)}{g(x)}$

Theorem. Suppose the limit $\lim_{x\to a} f(x)$ exists. Then:

1.
$$\lim_{x \to a} \left[f(x) \right]^n = \left[\lim_{x \to a} f(x) \right]^n$$

Power Law

$$2. \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

Root Law

Example. Evaluate the following limits and justify each step.

(a)
$$\lim_{x\to a} x^n$$
, where n is a positive integer.

(b)
$$\lim_{x\to 5} (2x^2 - 3x + 4)$$

(c)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Remark. What happens if we just plugged in the numbers in the previous example?

Example. Find $\lim_{x\to 1} \frac{x^2-1}{x-1}$. Conclude that direct substitution doesn't always work.

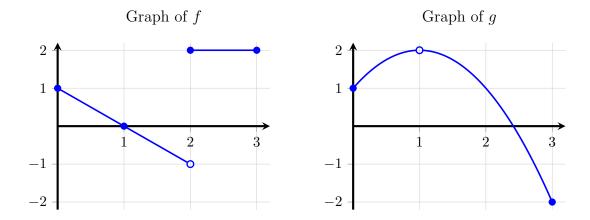
Question. Why does "factor and cancel" work?

Example. Evaluate $\lim_{h\to 0} \frac{(3+h)^2-9}{h}$ by simplifying the function.

Example. Evaluate $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$ by rationalizing.

Example. Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Example. Use the graphs of f and g to find $\lim_{x\to 1} f(g(x))$.

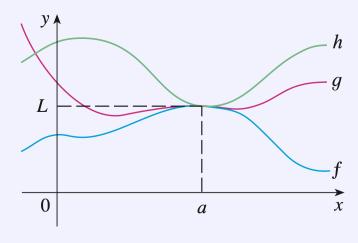


Theorem (Squeeze Theorem). If $f(x) \leq g(x) \leq h(x)$ for x near a (except possibly at a) and

$$\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L,$$

then

$$\lim_{x \to a} g(x) = L.$$



Example. Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Remark. Below are the graphs of $y = x^2$, $y = -x^2$, and $y = x^2 \sin \frac{1}{x}$. The squeeze theorem applies.

