Overview
Limit laws let you break a messy limit into simple pieces: add, subtract, multiply, divide, pull out constants, raise to powers, and take roots.
The Limit Laws
- Sum: \(\lim (f + g)=\lim f + \lim g\)
- Difference: \(\lim (f- g)=\lim f - \lim g\)
- Constant multiple: \(\lim (c\,f)=c\cdot\lim f\)
- Product: \(\lim (fg)=(\lim f)(\lim g)\)
- Quotient: \(\lim (f/g)=(\lim f)/(\lim g)\) if \(\lim g\neq0\)
- Powers/Roots: \(\lim (f^n)=(\lim f)^n\), \(\lim \sqrt[n]{f}=\sqrt[n]{\lim f}\) when defined
Example: Polynomial
\(\displaystyle \lim_{x\to 2}\big(3x^2-5x+1\big)=3(2)^2-5(2)+1=3\)
Example: Rational with nonzero denominator
\(\displaystyle \lim_{x\to 4}\frac{x^2-1}{x+3}=\frac{\lim_{x\to 4} x^2-1}{\lim_{x\to 4} x+3}=\frac{16-1}{7}=\frac{15}{7}\)
Fixing \(0/0\)
Example: Factor & cancel
Factor: \(\frac{(x-3)(x+3)}{x-3}=x+3\) (for \(x\ne3\)). Now substitute: \(3+3=6\).
Example: Rationalizing a root
Multiply top/bottom by \(\sqrt{4+x}+2\): \(\frac{(4+x)-4}{x(\sqrt{4+x}+2)}=\frac{1}{\sqrt{4+x}+2}\to \frac14\).
Interactive: Why “factor & cancel” works for limits
Conclusion: Near \(a\) (but not at \(a\)), the functions are equal. Canceling common factors only changes the value at the hole, not the limit.
Combining limits of \(f\) and \(g\)
We can use information about \(f\) and \(g\) and to compute limits of expressions like \(f(x)+g(x)\), \(f(x)g(x)\), or \(\frac{f(x)}{g(x)}\) at a given \(a\).
Suppose from the graphs you find \( \lim_{x\to 2} f(x)=3\) and \( \lim_{x\to 2} g(x)=-\tfrac12\).Example
Example: Wacky Limits