2.2 The Limit of a Function

Definition. Let f be defined for all x close to a (except possibly at a). We say

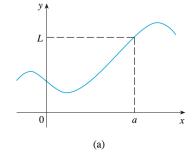
$$\lim_{x \to a} f(x) = L$$

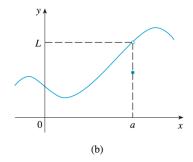
if the values f(x) can be made as close to L as we like by taking x sufficiently close to a (with $x \neq a$). In other words, as x approaches a, f(x) approaches L.

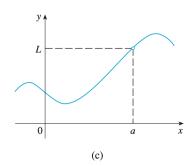
Note: The limit describes the behavior of f(x) near a, not necessarily its value at a.

Example. Using a table, find $\lim_{x\to 0} \left(x^3 + \frac{\cos(5x)}{10,000} \right)$

Example. Understand why $\lim_{x\to a} f(x) = L$ in all three cases below.







Example. The Heaviside function H is defined by

$$H(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

Explain why $\lim_{t\to 0} H(t)$ does not exist.

Definition. Let f be defined for x-values near a.

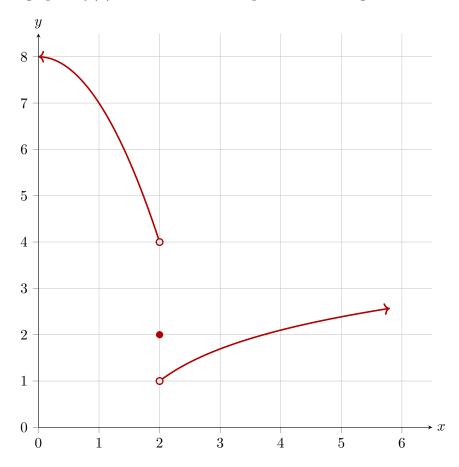
- **Right-hand limit.** We write $\lim_{x\to a^+} f(x) = L$ if the outputs f(x) approach L as x approaches a, for x-values greater than a.
- **Left-hand limit.** We write $\lim_{x\to a^-} f(x) = L$ if the outputs f(x) approach L as x approaches a, for x-values less than a.

Theorem. For the two-sided limit $\lim_{x\to a} f(x)$ to be equal to L, both one-sided limits must also be equal to L:

$$\lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = L.$$

The two-sided limit $\lim_{x\to a} f(x)$ does not exist if the left and right limits are not both defined and equal.

Example. The graph of f(x) is shown below. Compute the following:



- $\bullet \lim_{x \to 2^-} f(x) =$
- $\bullet \lim_{x \to 2^+} f(x) =$
- $\bullet \lim_{x \to 2} f(x) =$
- f(2) =

Example. Find $\lim_{x\to 0} \left(\frac{1}{x^2}\right)$ if it exists.

Definition. Let f be defined for x-values on both sides of a (except possibly at a itself).

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large by taking x sufficiently close to a (with $x \neq a$). Similarly,

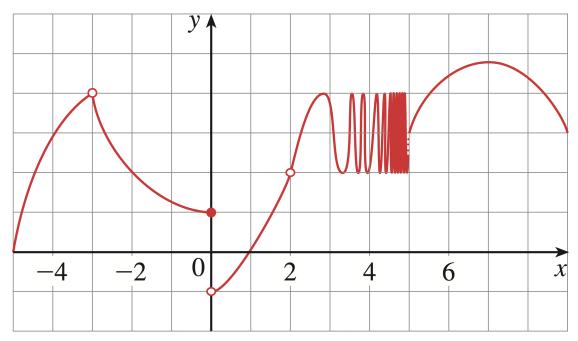
$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily negative by taking x sufficiently close to a.

Remark. If $\lim_{x\to a} f(x) = \infty$ (or $-\infty$), the limit **does not exist**. The symbol ∞ specifies how it fails to exist. For a two-sided infinite limit, both one-sided limits must blow up the same way:

$$\lim_{x \to a^{-}} f(x) = \infty \text{ and } \lim_{x \to a^{+}} f(x) = \infty \text{ (or both } = -\infty).$$

Example. For the function h whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.



(a) $\lim_{x \to -3^-} h(x)$

(g) $\lim_{x\to 0} h(x)$

(b) $\lim_{x \to -3^+} h(x)$

(h) h(0)

(c) $\lim_{x \to -3} h(x)$

(i) $\lim_{x \to 2} h(x)$

(d) h(-3)

(j) h(2)

(e) $\lim_{x \to 0^-} h(x)$

(k) $\lim_{x \to 5^+} h(x)$

(f) $\lim_{x \to 0^+} h(x)$

(l) $\lim_{x \to 5^-} h(x)$

Example. Sketch the graph of an example of a function f that satisfies all of the given conditions.

- $\bullet \lim_{x \to 0^-} f(x) = -1$
- $\bullet \ \lim_{x \to 0^+} f(x) = 2$
- f(0) = 1

Example. Sketch the graph of an example of a function f that satisfies all of the given conditions.

- $\lim_{x\to 0} f(x) = 1$
- $\bullet \ \lim_{x \to 3^-} f(x) = -2$
- $\lim_{x\to 3^+} f(x) = 2$
- f(0) = -1
- f(3) = 1