Overview
We can compute limits using graphs, using tables, and using algebra. Regardless of method, the idea of a limit is to examine how the function behaves as it approaches a particular \(x\)-value. A two-sided limit exist only when the function approaches the same value from the left and right.
Computing limits from graphs
In general, we can compute \(\lim_{x\to a} f(x)\) from a graph of \(f(x)\) by using the graph to understand how the function behaves on both sides of \(x=a\).
Example
Let \(f(x)\) be the function graphed below.Solution
- Left-hand limit: \(\displaystyle\lim_{x\to -2^-} f(x)=1.5\) since the curve approaches the open circle’s height.
- Right-hand limit: \(\displaystyle\lim_{x\to -2^+} f(x)=1.5\).
- Therefore \(\displaystyle\lim_{x\to -2} f(x)=1.5\) since \(\displaystyle\lim_{x\to -2^-}f(x)=\lim_{x\to -2^+}f(x)=1.5\).
- Function value: the filled dot gives \(f(-2)=2.5\) the \(y\)-value of the solid point.
Computing limits from tables
Use \(x\) values approaching \(a\) from both sides. If the value of \(f(x)\) settles, that’s the limit.
Example: Trig function
Use a table to compute \( \lim_{x\to 0} f(x)=\dfrac{\cos(2x)-\cos x}{x^2} \).Solution
- Pick inputs: \(x=\{-0.1,-0.01,-0.001,0.001,0.01,0.1\}\).
- Compute \(f(x)\) for each value.
- Observe the trend. The values approach \(-1.5\), so the limit is \(-\tfrac{3}{2}\).
| x | f(x) |
|---|---|
| -0.1 | -1.493758743678 |
| -0.01 | -1.499937500875 |
| -0.001 | -1.499999375043 |
| 0.001 | -1.499999375043 |
| 0.01 | -1.499937500875 |
| 0.1 | -1.493758743678 |
Computing limits algebraically
Example: Piecewise function
Consider the function:Solution
At \(x=2\):
- \(\lim_{x\to 2^-} f(x)=(2)^2-1=3\)
- \(\lim_{x\to 2^+} f(x)=3(2)-5=1\)
Example: Absolute Value
Consider the function:Compute \(\lim_{x\to 0} f(x)\), if it exists.
Solution
At \(x=0\):
- \(\lim_{x\to 0^-} \frac{|x|}{x} = \lim_{x\to 0^-} \frac{-x}{x} = -1\)
- \(\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{x}{x} = 1 \)