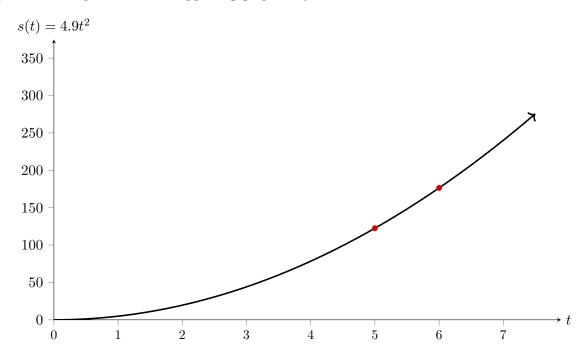
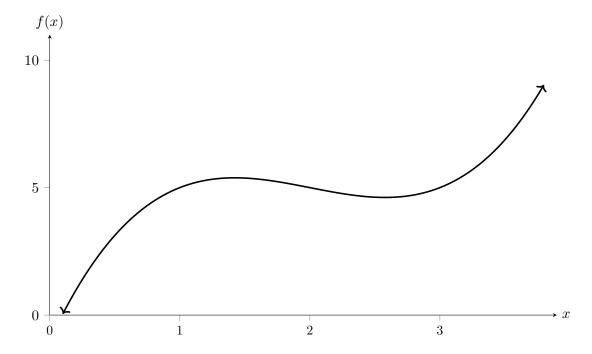
2.1 The tangent and velocity problems

Example. Galileo found that the distance fallen by any freely falling body (neglecting air resistance) after t seconds is $s(t) = 4.9t^2$ meters. Suppose that a ball is dropped from 450m above the ground. Our goal is to find the velocity of the ball after exactly 5 seconds.


Question. How do you compute the average velocity over a time interval [a, b]?

Question. Find the average velocity of the ball over the given time intervals.

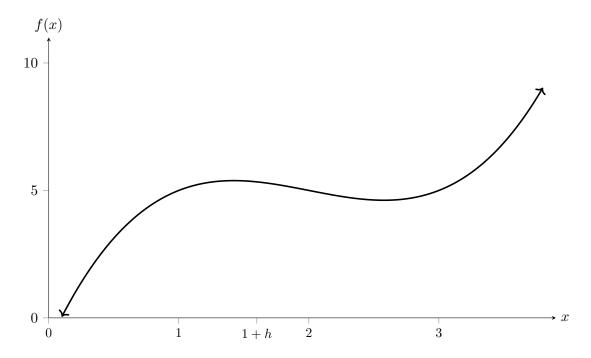
Time Interval	Average Velocity
$5 \le t \le 6$	
$5 \le t \le 5.1$	
$5 \le t \le 5.05$	
$5 \le t \le 5.01$	
$5 \le t \le 5.001$	


Question. Make a guess for what the velocity of the ball will be after exactly 5 seconds.

 ${\bf Question.}$ Explain what is happening graphically in the above scenario.

The tangent and velocity problems - activity

Below is the graph of the function $f(x) = (x-2)^3 - x + 7$. The goal of this activity is to estimate the instantaneous change of f(x) at x = 1.



Question. Find the average rate of change of f(x) on the interval [1, 2]. Draw the corresponding secant line on the graph above.

Question. Find the average rate of change of f(x) on the interval [1, 1.5]. Draw the corresponding secant line on the graph above.

Question. Find the average rate of change of f(x) on the interval [1, 1.001]. Draw the corresponding secant line on the graph above.

Question. Estimate the instantaneous change at x = 1. Draw the corresponding tangent line on the graph above.

Question. Let h be an arbitrary number that represents the distance between x = 1 and another x value. Find the average rate of change of f(x) between x = 1 and x = 1 + h.

Question. Explain what we need to do to h in the expression above to estimate the instantaneous change at x = 1.

Question. Write down an expression that computes the instantaneous rate of change at an arbitrary value x=a.