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2.1 The tangent and velocity problems

Example. Galileo found that the distance fallen by\any freely falling body (neglecting air resis-
tance) after ¢ seconds is s(t) = 4.9t meters. Suppose that a ball is dropped from 450m above the
ground. Our goal is to find the velocity of the ball after exactly 5 seconds.

Question. How do you compute the average velocity over a time interval [a, b]?
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Question. Find the average velocity of the ball over the given time intervals.

Time Interval | Average Velocity
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Question. Make a guess for what the velocity of the ball will be after exactly 5 seconds.
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Question. Explain what is happening graphically in the above scenario.
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2.1 The tangent and velocity problems (activity)

Below is the graph of the function f(z) = (z —2)3 — 2 + 7. The goal of this activity is to estimate
the instantaneous change of f(z) at z = 1.
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Question 1. Find the average rate of change of f(x) on the interval [1,2]. Draw the corresponding
secant line on the graph above.

Question 2. Find the average rate of change of f(z) on the interval [1,1.5]. Draw the corresponding
secant line on the graph above.

Question 3. Find the average rate of change of f(z) on the interval [1,1.001]. Draw the corre-
sponding secant line on the graph above.
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Question 4. Estimate the instantaneous change at x = 1. Draw the corresponding tangent line
on the graph above.
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Question 5. Let i be an arbitrary number that represents the distance between £ = 1 and another
x value. Find the average rate of change of f(x) between x =1 and x = 1+ h.
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Question 6. Explain what we need to do to h in the expression above to estimate the instantaneous
change at x = 1.
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Question 7. Write down an expression that computes the instantaneous rate of change at an
arbitrary value z = a.
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