Precalculus Review

1. Let $f(x) = \frac{5}{2x+1}$. Compute the difference quotient $\frac{f(a+h) - f(a)}{h}$ for $h \neq 0$.

Solution:

$$\frac{f(a+h)-f(a)}{h} = \frac{\frac{5}{2a+2h+1} - \frac{5}{2a+1}}{h}$$

$$= \frac{5((2a+1)-(2a+2h+1))}{h(2a+2h+1)(2a+1)}$$

$$= \frac{-10h}{h(2a+2h+1)(2a+1)}$$

$$= \frac{-10}{(2a+2h+1)(2a+1)}$$

2. Find an equation of the line through (2,7) that is parallel to the line passing through (1,3) and (4,15).

Solution: Slope of the given line: $m = \frac{15-3}{4-1} = \frac{12}{3} = 4$. A parallel line through (2,7) has slope 4: $y-7=4(x-2) \implies y=4x-1$.

3. Solve the equation $8x^2 - 2x - 3 = 0$ by factoring.

Solution: $8x^2 - 2x - 3 = (4x - 3)(2x + 1) = 0 \implies x = \frac{3}{4} \text{ or } x = -\frac{1}{2}$.

4. Find all real solutions to the equation $x^4 - 7x^2 + 10 = 0$.

Solution: Let $u = x^2$. Then $u^2 - 7u + 10 = (u - 5)(u - 2) = 0$, so $x^2 = 5$ or $x^2 = 2$ \Longrightarrow $x = \pm \sqrt{5}, \pm \sqrt{2}$.

5. Factor the expression completely: $2x^3 + 5x^2 - 18x - 45$.

Solution: Group terms:

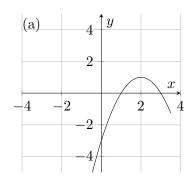
$$2x^{3} + 5x^{2} - 18x - 45 = (2x^{3} + 5x^{2}) + (-18x - 45)$$
$$= x^{2}(2x + 5) - 9(2x + 5)$$
$$= (2x + 5)(x^{2} - 9)$$
$$= (2x + 5)(x - 3)(x + 3)$$

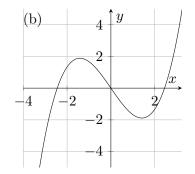
6. Examine the leading term of $P(x) = -3x^4 + 6x^2 - 5x + 18$ and determine the far-left and far-right behavior of its graph.

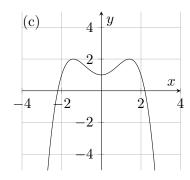
Solution: The leading term is $-3x^4$: even degree with negative leading coefficient. Thus both ends go down:

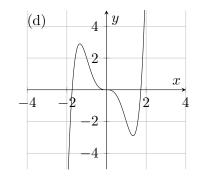
$$\lim_{x \to -\infty} P(x) = -\infty \quad \text{and} \quad \lim_{x \to +\infty} P(x) = -\infty$$

7. Match each graph to the corresponding polynomial.









(i)
$$f(x) = \frac{3}{2}x - 1$$

(ii)
$$f(x) = -x^2 + 4x - 3$$

(iii)
$$f(x) = \frac{1}{8}x^4 - x^2$$

(iv)
$$f(x) = -\frac{1}{2}x^3 + x^2 + 1$$

(v)
$$f(x) = x^4 - 2x^3 - x^2$$

(vi)
$$f(x) = \frac{1}{3}x^3 - 2x$$

(vii)
$$f(x) = -\frac{1}{4}x^4 + x^2 + 1$$

(viii)
$$f(x) = x^5 - 3x^3$$

Solution: Matchings:

$$(a) \leftrightarrow (ii), \quad (b) \leftrightarrow (vi), \quad (c) \leftrightarrow (vii), \quad (d) \leftrightarrow (viii).$$

(Quadratic opening down \rightarrow (ii); odd cubic with origin symmetry \rightarrow (vi); even quartic opening down with vertical shift \rightarrow (vii); odd quintic with triple symmetry \rightarrow (viii).)

8. Evaluate $\log_2\left(\frac{1}{16}\right)$.

Solution:
$$\frac{1}{16} = 2^{-4}$$
, so $\log_2(\frac{1}{16}) = -4$.

9. Evaluate $\sin(x)$, $\cos(x)$, $\tan(x)$, $\sec(x)$, $\csc(x)$, and $\cot(x)$ at $x = \frac{7\pi}{3}$.

Solution: $\frac{7\pi}{3} = 2\pi + \frac{\pi}{3}$, so it is coterminal with $\frac{\pi}{3}$ (Quadrant I).

$$\sin\left(\frac{7\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{7\pi}{3}\right) = \frac{1}{2}, \quad \tan\left(\frac{7\pi}{3}\right) = \sqrt{3}.$$

$$\sec\left(\frac{7\pi}{3}\right) = 2$$
, $\csc\left(\frac{7\pi}{3}\right) = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$, $\cot\left(\frac{7\pi}{3}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$.

10. Find the amplitude and period of $y = -3\sin(4\pi x)$. Then sketch the graph.

Solution: In $y = A\sin(Bx)$, amplitude = |A| = 3. Here $B = 4\pi$, so the period is

$$T = \frac{2\pi}{B} = \frac{2\pi}{4\pi} = \boxed{\frac{1}{2}}.$$

The negative sign reflects the sine across the x-axis.

