MATH 1150: Midterm 2 Practice

1. Find the inverse function $g^{-1}(x)$ of the following function:

$$g(x) = \frac{5}{x+4}$$

2. The function q(x) maps input values to output values as shown in the table below. Find $q^{-1}(3)$, if it exists.

x	q(x)
-4	5
-2	3
1	0
3	-1
5	4

- 3. A line passes through the point (3,1) and is perpendicular to the line with equation $y = -\frac{3}{4}x + 2$. Find the equation of the new line.
- 4. Find the equation of a circle whose center is at (6, -2) and has a diameter of 10 units.
- 5. Solve for x in the equation:

$$4(x+1)^2 - 9 = 19$$

6. Solve for x in the equation:

$$x^4 - 8x^2 + 16 = 0$$

- 7. Identify the domain and range of the exponential function $h(x) = 3 2^x$.
- 8. Identify the domain and range of the logarithmic function $k(x) = \log_3(x-7) + 5$.
- 9. Compute $\log_5\left(\frac{1}{25}\right)$, $\log_5(1)$, and $\log_5(25)$.
- 10. Given $f(x) = \frac{1}{4}\log_6(x+5)$, find its inverse function $f^{-1}(x)$.

- 11. A tank is being drained at a constant rate of 4 liters per minute. Initially, it contains 100 liters of water.
 - (a) Construct a linear model V(t) for the volume of water remaining after t minutes.
 - (b) Determine how long it takes for the tank to be empty.
- 12. A toy rocket is launched from the ground, and its height h(t) in meters after t seconds is given by:

$$h(t) = -4(t-2)^2 + 50.$$

- (a) Find the maximum height achieved by the rocket.
- (b) Determine when the rocket lands back on the ground.
- 13. Describe the end behavior of the polynomial function:

$$g(x) = -(x+3)^3(x-5)^2(x+1)$$

14. Consider the rational function:

$$r(x) = \frac{2(x-2)(x+3)(x+1)^2(x+5)^2}{5(x+3)^2(x+1)(x-4)^3}.$$

- (a) Identify the vertical asymptotes.
- (b) Determine whether a horizontal asymptote exists.
- (c) Locate any holes in the function.
- 15. A scientist observes that the population of bacteria in a petri dish doubles every hour. Initially, there are 20 bacteria.
 - (a) Express the population as a function of time t in hours.
 - (b) Determine how many bacteria there will be after 5 hours
- 16. A scientist observes that the population of bacteria in a petri dish doubles every hour. Initially, there are 20 bacteria.
 - (a) Express the population as a function of time t in hours.
 - (b) Determine how many bacteria there will be after 5 hours.