Math 1150: Final Exam Practice

Radical & Exponential Simplification

1. Simplify the expression. Assume all variables are positive $\left(\frac{81a^6}{b^{12}}\right)^{1/2}$.

2. Simplify
$$\left(\frac{27p^3q^{-6}}{3p^{-2}q^2}\right)^{1/3}$$
.

Inequalities

1. Solve the inequality |3x - 4| > 5.

2. Solve the inequality $|-4x+8| \le 12$.

3. Solve (x+1)(x-7) < 0.

4. Solve (x-2)(x+5) < 0.

Difference Quotients

1. Compute the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=2x^2+5x$.

2. Compute the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=3x^2-5x+1$.

Polynomial Equations

1. Solve for x: (x-4)(x+6) = 5.

2. Solve for x: (2x-3)(x+4) = 6.

Domain & Rational Functions

1. Determine the domain of $f(x) = \frac{\sqrt{x+1}}{x^2-9}$.

2. Determine the domain of $f(x) = \frac{\sqrt{5x+4}}{x^2-1}$.

3. Identify all vertical asymptotes of $f(x) = \frac{\sqrt{x-3}}{x^2-4x+3}$. (Challenge)

1

4. Analyze the end behavior of $f(x) = \frac{5x^3 - x + 1}{x^3 + 2x - 4}$.

5. Analyze the end behavior of $f(x) = \frac{2x^2 - 7x + 4}{x^3 + 5x - 2}$.

Function Operations & Inverses

- 1. Given f(-3) = 4, f(0) = 2, f(2) = -1 and $g(x) = 2x^2 1$, find g(f(0)).
- 2. Given f(0) = 3, f(2) = 5, f(4) = -1 and g(x) = x + 2, find f(g(2)).
- 3. Describe the sequence of transformations taking $f(x) = x^3$ to $h(x) = -2(x+1)^3 4$, then find $h^{-1}(y)$.
- 4. Evaluate $f^{-1}(2)$ if f(1) = 4, f(2) = 2, f(3) = -3, f(4) = 1.
- 5. Find the inverse of f(x) = 3x 7.

Lines, Parabolas & Circles

- 1. Find the equation of the line perpendicular to $y = -\frac{1}{2}x + 3$ passing through (2, -1).
- 2. Write the equation of the line parallel to y = 7x 2 passing through (-1, 3).
- 3. Find the vertex of the parabola $f(x) = -x^2 + 6x 2$.
- 4. Identify the center and radius of the circle $(x+5)^2 + (y-3)^2 = 36$.

Optimization Problems

- 1. A rectangular pen is built next to a barn wall using 40 ft of fencing (two sides length x, one side y).
 - (a) Express the area in terms of x and y.
 - (b) Write the area as a function of x alone.
 - (c) Find the values of x and y that maximize the area.
- 2. Find the maximum area of a rectangle with perimeter 50. Give its dimensions.
- 3. A revenue model is $R(p) = -5p^2 + 100p$.
 - (a) Find the price p that maximizes revenue.
 - (b) Compute the maximum revenue.

Logarithmic & Exponential Functions

- 1. Evaluate $\log_4(\frac{1}{64})$.
- 2. Simplify $\log_2(16) + \log_2(\frac{1}{2})$.
- 3. Convert ln(y) = 7 into exponential form.
- 4. Convert ln(8) = y into exponential form.
- 5. Solve $\log_3(x^2 + 1) = 2$.
- 6. Solve $\log_2(x^2 4) = 3$. State any restrictions.
- 7. Evaluate $\log_3(9) \log_3(\frac{1}{3})$.

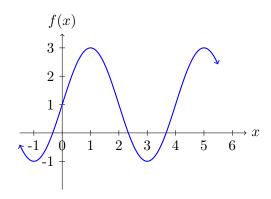
Trigonometric Evaluation & Identities

- 1. Evaluate $\tan\left(\frac{5\pi}{6}\right)$.
- 2. Simplify $\frac{\sin^2(x) + \cos^2(x)}{\tan(x)}$.
- 3. Simplify $\frac{1-\cos(2x)}{\sin(x)}$.
- 4. Evaluate $\sin(\frac{7\pi}{3})$ by finding a coterminal angle.
- 5. Use a sum identity to evaluate $\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$.
- 6. Use a sum identity to compute $\sin\left(\frac{5\pi}{12}\right)$.
- 7. Use a half-angle identity to evaluate $\sin\left(\frac{5\pi}{8}\right)$.
- 8. Given $\cos(\theta) = \frac{4}{5}$ with $0 < \theta < \frac{\pi}{2}$, find $\cos(2\theta)$.
- 9. Given $\sin(\phi) = \frac{7}{25}$ with $\frac{\pi}{2} < \phi < \pi$, find $\cos(\frac{\phi}{2})$.
- 10. Given $\cos(\theta) = \frac{5}{13}$ with $0 < \theta < \frac{\pi}{2}$, find $\cos(2\theta)$.

Inverse Trigonometric Functions

- 1. Evaluate $\arcsin(-1)$.
- 2. Evaluate $\arccos(-\frac{1}{2})$.
- 3. Evaluate $\tan^{-1}(1)$ and explain the result.
- 4. Evaluate $\cos^{-1}(\cos(\frac{11\pi}{6}))$.

Trigonometric Equations


- 1. Find all solutions to $2\cos(3x) = 1$ for $0 \le x \le 2\pi$.
- 2. Find all solutions to $\cos^2(x) \sin(x) = 1$ in $[0, 4\pi]$.
- 3. Find all solutions to $2\sin(x) = \sqrt{3}$ in $[0, 2\pi]$.
- 4. Solve $\sin^2(x) + \sin(x) = 0$ for all real x.

Triangle Applications

- 1. A 12-ft ladder leans against a wall, making a 60° angle with the ground. How high up the wall does it reach?
- 2. In a triangle with angles 30°, 60° and hypotenuse 8, find the side opposite 30°.
- 3. In a right triangle with hypotenuse 10 and one angle 30°, find the side opposite 30°.
- 4. In triangle ABC, a=6, b=7, $\angle C=45^{\circ}$. Find c via the Law of Cosines.
- 5. In a triangle with a=5, b=7, $\angle C=60^{\circ}$, use the Law of Cosines to find c.

Graphing & Transformations

- 1. State the amplitude, period, and midline of $f(x) = 3 4\cos(2x)$.
- 2. Sketch one period of $y = 3\cos(\pi x) 2$, labeling key points.
- 3. What is the equation of the function whose graph is shown below?

- 4. Sketch a function f satisfying:
 - $\lim_{x\to 1^-} f(x) = -\infty$
 - $\lim_{x\to 1^+} f(x) = \infty$
 - f(0) = 0, f(2) = 2
 - Horizontal asymptote y = 1
- 5. Sketch the graph of a function g(x) satisfying all of the following properties:
 - As $x \to 2^-, g(x) \to 5$.
 - As $x \to 2^+, g(x) \to -3$.
 - g(2) = 3
 - g(0) = 1
 - $\lim_{x \to -1} g(x) = 2$ but g(-1) = 0
 - As $x \to +\infty$, $g(x) \to 0$.
 - As $x \to -\infty$, $g(x) \to 1$.