## **Quadratic Functions**

#### Introduction

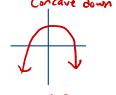
Quadratic functions are fundamental mathematical models used in a variety of real-world contexts, such as physics, economics, and engineering. In this lecture, we will explore their properties, forms, and graphical representations.

## Overview of Quadratic Function Forms

| Form                   | Equation               | Notes                                                                                          |
|------------------------|------------------------|------------------------------------------------------------------------------------------------|
| General Form           | $f(x) = ax^2 + bx + c$ | a, b, and $c$ are constants. Useful for identifying the $y$ -intercept, $c$ .                  |
| Vertex (Standard) Form | $f(x) = a(x-h)^2 + k$  | a determines the direction and width of the parabola. $(h,k)$ is the vertex.                   |
| Factored Form          | f(x) = a(x-r,)(x-r2)   | $r_1$ and $r_2$ are the roots (zeros) of the quadratic function. Useful for solving equations. |

Remark. In general form,



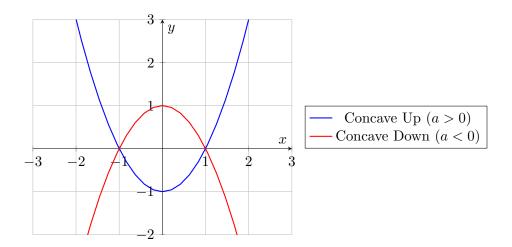


- · a determines the concavity of the function
- · b affects the symmetry across the y-axis
- · c is the y-intercept

#### Concavity

The concavity of a quadratic function describes the direction the parabola opens.

- a>0: parabola opens upwords (concave up)
- a < 0: parabola opens downwards (concave down)



# Vertex and Maximum/Minimum

The vertex represents the highest or larest point on the parabola

- If a>0, \_\_\_\_\_ the vertex is a minimum
- If a < 0, the vertex is a Maximum.

**Question.** In standard form  $y = a(x - h)^2 + k$ , the vertex is (h, k). How can we find the vertex if the function is in general form  $y = ax^2 + bx + c$ ?

In general form, the vertex occurs at 
$$x = \frac{-b}{2a}$$
  
The vertex is at  $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$   
 $x$ -coord

#### Finding the Vertex

**Example.** Find the vertex of  $y = 2x^2 - 4x + 1$ .

① use 
$$X = \frac{-b}{2a}$$
.  $X = \frac{-(-4)}{2 \cdot 2} = \frac{4}{4} = 1$ 

(2) Find y-coord. 
$$y = 2(1)^2 - 4(1) + 1 = 2 - 4 + 1 = -1$$

#### Converting General Form to Standard Form

**Example.** Convert  $y = 2x^2 - 4x + 1$  to standard form.

From the above, 
$$(h,k) = (1,-1)$$
 and  $a = 2$ 

$$y = a(x-h)^2 + k = 2(x-1)^2 - 1$$

## Finding Intercepts

**Example.** Find the x-intercepts and y-intercept of the quadratic function:  $f(x) = 2x^2 - 4x + 1$ .

① y-interept: 
$$f(0) = 2 \cdot 0^2 - 4 \cdot 0 + 1 = 0 - 0 + 1 = 1$$

(2) 
$$x$$
-intercepts: We need to solve  $f(x) = 0$   
 $2x^2 - 4x + 1 = 0$ 

How to solve 
$$ax^2+bx+c=0$$
  
of factor  $\int \int \int f(x)dx$ 

**Example.** Find a function f whose graph is a parabola with the given vertex and that passes through the given point.

- Vertex: (2, -3)
- Point: (4,5)

Vertex/Standard Form: 
$$f(x) = a(x-h)^2 + k$$

Substitute (2,-3): 
$$f(x) = a(x-2)^2 - 3$$

Substitute (4,5) to find a: 
$$f(4) = a(4-2)^2 - 3 = 5$$
  
 $a(2)^2 - 3 = 5$   
 $4a = 8$ 

$$\Rightarrow$$
  $f(x) = 2(x-2)^2 - 3$ 

### **Graphing Quadratic Functions**

**Example.** Graph the quadratic function  $f(x) = x^2 - 2x - 3$  and determine its domain and range.

1 Vertex: 
$$X = \frac{-b}{2a} = \frac{-(-2)}{2 \cdot 1} = \frac{2}{2} = 1$$

$$y = (1)^2 - 2(1) - 3 = 1 - 2 - 3 = -4$$

② y-intercept is 
$$f(0) = 0^2 - 2.0 - 3 = -3$$

$$x^2 - 2x - 3 = 0$$

$$(x-3)(x+1) = 0$$

$$X = 3$$
 or  $X = -1$ 

(4) Choose additional points on the graph:

$$f(z) = 2^2 - 2(z) - 3 = -3$$

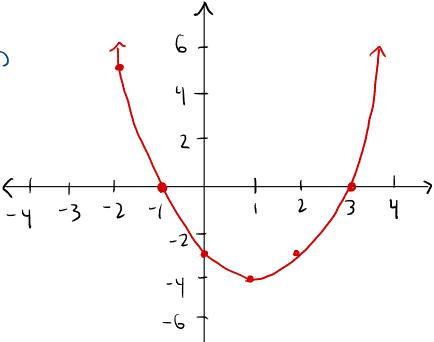
$$f(-2) = (-1)^2 - 2(-1) - 3 = 5$$
 (-2, 5)

Vertex: (1,-4)

y-interept: (0,-3)

X-interepts: (3,0) and (-1,0)

points: (2,-3) and (-2,5)



Domain: (-0,00)

Raye: [-4, 00)

#### **Application: Projectile Motion**

In physics, the motion of an object under the influence of gravity, such as a ball thrown in the air, can be modeled by a quadratic function. The equation for the height h(t) of the object at time t is typically given by:

$$h(t) = -\frac{1}{2}gt^2 + v_0t + h_0,$$

where:

- g is the acceleration due to gravity (approximately 9.8 m/s<sup>2</sup> on Earth).
- $v_0$  is the initial velocity of the object (in m/s).
- $h_0$  is the initial height of the object (in m).

**Example.** A ball is thrown upward with an initial velocity of 20 m/s from a height of 2 m. The height of the ball at any time t seconds is given by:

$$h(t) = -4.9t^2 + 20t + 2.$$

Find:

- 1. The maximum height of the ball.
- 2. The time it takes for the ball to hit the ground.