Inverse Functions

Inverse functions allow us to reverse the process of a function, turning the output (y) back into
the input (z). We will explore what makes a function invertible, how to find inverses, and their
connection to reflections about the line y = .

Definition. What is an inverse function?
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Question. How can we verify if two functions are inverses of each other?
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Example. If f(z) = 2z + 3, verify that f~1(x) = 5
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Question. When is a function invertible?
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Example. Determine whether or not z2 and z3 are invertible.
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Question. Given a function f(z), what are the steps to find the inverse function f~!(x)?
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Example. Find the inverse of f(x) = x +3 .
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Example. A graph of a function is given. Use the graph to find the indicated values.
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Example. If f(z) = 3z + 1, what is f~1(10)?
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Question. What is the relationship between the graphs of f(x) and f~!(z)?
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Example. Below is the graph of f(z) = 2z + 3 and its inverse function f~!(z) = z .
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Question. What is the range of f(z)?
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Example. What is the range of f(z) = T +3 ?
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Application: CT scans

Medical imaging techniques, like CT (Computed Tomography) scans, use inverse functions to re-
construct images of the inside of the human body from external measurements.

How It Works
1. Data Collection:

e A CT scanner rotates around the patient, taking multiple X-ray images from different
angles.

e These X-ray images measure how much energy passes through the body at each angle,
creating a dataset of projections.

2. The Problem:

e The projections (raw data) don’t directly show the internal structure of the body.

e To create an image of the body, we need to work backward from the projections to find
the original density distribution of tissues inside the body.

The Radon transform
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3. Using Inverse Functions:

e The process of reconstructing the image involves solving a mathematical problem called
the Radon Transform.

e In simple terms, the CT scanner applies an inverse function to the collected data to
“undo” the projection process, reconstructing the original image.

4. The Result:
e The reconstructed image shows cross-sections of the body, helping doctors identify ab-
normalities like tumors, fractures, or internal bleeding.
Why Inverse Functions Matter in CT Scans

e Without inverse functions, the raw data collected by the scanner would be meaningless, as it
only shows how much energy passed through the body—mnot the actual structure.

e Inverse functions help “translate” the data into a detailed image, allowing doctors to make
accurate diagnoses.



