Even and Odd Functions

Introduction

Functions are classified as even, odd, or neither based on their symmetry properties. Understanding these classifications is essential for analyzing graphs and solving equations.

Definitions of Even and Odd Functions

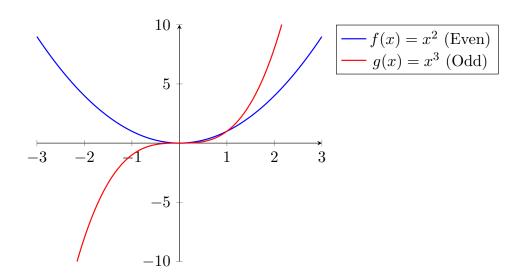
Type of Function	Definition	Geometric Interpretation
Even		
Odd		
Neither		

Examples of Even and Odd Functions

Example. $f(x) = x^2$

Example. $g(x) = x^3$

Example. $h(x) = x^3 + x^2$

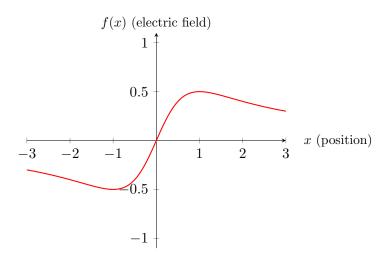

Example. $f(x) = \frac{1}{x^2}$

Example. $g(x) = \frac{x}{x^2 + 1}$

Graphical Interpretation of Even and Odd Functions

• Even functions are ______.

• Odd functions are _____



Application: Electric Field of a Charged Particle

An electric field points away from a positive charge and toward a negative charge.

$$\begin{tabular}{c|c} Left & Left & \\\hline & Charge & \\ \hline \end{tabular} \begin{tabular}{c|c} Right Right Right \\\hline \end{tabular}$$

We can model this by the function $f(x) = \frac{x}{x^2 + 1}$.

- On the right side of the charge, the field is positive (points to the right).
- On the left side of the charge, the field is negative (points to the left).
- At x = 0, the electric field is zero.

For the electric field:

$$f(-x) = \frac{-x}{(-x)^2 + 1} = -\frac{x}{x^2 + 1} = -f(x).$$

This symmetry means the electric field has _____

on either side of the charge.