Transformations of Functions

Introduction

Transformations allow us to modify functions to shift, stretch, compress, or reflect their graphs. Understanding transformations is key to graphing functions quickly and interpreting their behavior.

Types of Transformations

1. Vertical Transformations:

Transformation	Formula	What to do to the Coordinates
Vertical shift (up c)		
Vertical shift (down c)		
Vertical stretch		
Vertical shrink		
Reflection about the <i>x</i> -axis		

Example. Consider the quadratic function $f(x) = x^2$. A vertical shift up by 3 transforms the function to $f(x) + 3 = x^2 + 3$.

x	$f(x) = x^2$	f(x) + 3
-3	9	
-2	4	
-1	1	
0	0	
1	1	
2	4	
3	9	

2. Horizontal Transformations:

Transformation	Formula	What to do to the Coordinates
Horizontal shift (right c)		
Horizontal shift (left c)		
Horizontal stretch		
Horizontal shrink		
Reflection about the y -axis		

Example. Consider the quadratic function $f(x) = x^2$. A horizontal shrink by a factor of 2 transforms the function to f(2x).

x	$f(x) = x^2$	f(2x)
-3	9	
-2	4	
-1	1	
0	0	
1	1	
2	4	
3	9	

Sequences of Transformations

Question. How do we apply more than one transformation at a time?

Example: Let $f(x) = x^2$. Apply the following transformations in order:

- 1. Horizontal shift left 2.
- 2. Vertical stretch by 3.
- 3. Vertical shift down 1.

Example. Let $f(x) = x^2$. Apply the following transformations in order:

- 1. Horizontal shrink by a factor of 2.
- 2. Reflection about the x-axis.
- 3. Vertical shift up 4.

Example. Let $f(x) = x^2$. Apply the following transformations in order:

- 1. Vertical shift up by 2.
- 2. Horizontal stretch by a factor of 2.
- 3. Vertical stretch by a factor of 3.

What is a simplified formula for the resulting transformation?

y

Example. Given the transformed function:

$$g(x) = -\sqrt{x-3} + 2$$

Identify a parent function f(x) and state the transformations, in order, needed to get from f(x) to g(x).

Example. Given the transformed function:

$$h(x) = 2(x+1)^2 - 4$$

Identify a parent function f(x) and state the transformations, in order, needed to get from f(x) to h(x).