Composition of Functions

Introduction

Functions can be combined in many ways to create new functions, including addition, subtraction, multiplication, division, and composition.

Combining Functions: Addition, Subtraction, Multiplication, and Division

Combinations of Functions

Let f(x) and g(x) be two functions. Their combinations are defined as:

$$(f+g)(x) = f(x) + g(x),$$

$$(f-g)(x) = f(x) - g(x),$$

$$(f \cdot g)(x) = f(x) \cdot g(x),$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0.$$

Example. Let $f(x) = x^2 + 1$ and g(x) = 3x - 4. Find $(f+g)(x), (f-g)(x), (f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$.

$$(f+g)(x) = f(x)+g(x) = (x^2+1) + (3x-4) = x^2+3x-3$$

$$(f-g)(x) = f(x)-g(x) = (x^2+1) - (3x-4) = x^2-3x+5$$

$$(f\cdot g)(x) = f(x)\cdot g(x) = (x^2+1)\cdot (3x-4) = 3x^3-4x^2+3x-4$$

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)} = \frac{x^2+1}{3x-4}$$

Example. Let $f(x) = \sqrt{x}$ and g(x) = x - 1. Find $(f \cdot g)(x)$ and $\left(\frac{f}{g}\right)(x)$.

$$(f \cdot g)(x) = \sqrt{x}$$

$$(f \cdot g)(x) = \sqrt{x}$$

Composing of Functions

Definition. The composition of f and g, written $(f \circ g)(x)$, means f(g(x)). The output of g(x) becomes the input for f(x).

Steps to Compute $(f \circ g)(x)$

- 1. Substitute g(x) into f(x).
- 2. Simplify the resulting expression.

Example. Let f(x) = 2x + 3 and $g(x) = x^2 - 1$. Compute $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$(f \cdot y)(x) = f(y(x)) = f(x^{2}-1)$$

$$= 2(x^{2}-1) + 3$$

$$= 2x^{2} - 2 + 3$$

$$= 2x^{2} + 1$$

$$(g \circ f)(x) = g(f(x)) = g(2x+3)$$

$$= (2x+3)^{2} - 1$$

$$= 4x^{2} + 12x + 9 - 1$$

$$= 4x^{2} + 12x + 8$$

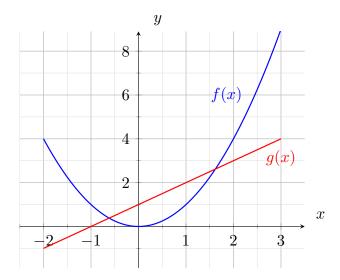
Example. Let $f(x) = \sqrt{x+1}$ and $g(x) = x^2$. Compute $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$(f \circ g)(x) = f(g(x)) = f(x^2) = \sqrt{x^2 + 1}$$

 $(g \circ f)(x) = g(f(x)) = g(\sqrt{x + 1}) = (\sqrt{x + 1})^2 = x + 1$

Evaluating Combined Functions From a Graph

Given the graphs of f(x) and g(x), evaluate the following combined functions.



Example. Evaluate (f+g)(2)

$$(f+g)(z) = f(z) + g(z) = 4+3 = 7$$

Example. Evaluate (f - g)(-1).

Example. Evaluate $(f \circ g)(1)$.

$$(f \circ g)(i) = f(g(i)) = f(2) = 4$$

Example. Evaluate $(f \cdot g)(0)$.

Example. Evaluate $\left(\frac{f}{g}\right)(-2)$.

$$\left(\frac{f}{g}\right)(-2) = \frac{f(-2)}{g(-2)} = \frac{4}{-1} = -4$$

Evaluating Combined Functions From a Table

x	f(x)	g(x)
-1	1	0
0	0	1
1	1	2

Example. Evaluate (f+g)(1)

$$(f+g)(i) = f(i)+g(i) = i+2 = 3$$

Example. Evaluate $(f \cdot g)(-1)$

$$(f \cdot y)(-1) = f(-1) \cdot g(-1) = 1 \cdot 0 = 0$$

Example. Evaluate $(f \circ g)(0)$

Domain of Combined Functions

The domain of a combined function depends on the domains of f(x) and g(x), as well as the operation being performed:

General Rules for Domains

- Addition/Subtraction: For (f+g)(x) or (f-g)(x), the domain is the intersection of the domain of f and the domain of g.
- Multiplication: For $(f \cdot g)(x)$, the domain is the intersection of the domain of f and the domain of g.
- **Division:** For $\left(\frac{f}{g}\right)(x)$, the domain is the intersection of the domain of f and the domain of g, and we also exclude values where g(x) = 0.
- Composition: For $(f \circ g)(x)$, x must belong to the domain of g, and g(x) must belong to the domain of f.

Example. Let $f(x) = \sqrt{x}$ and g(x) = x - 2. Find the domain of $(f \circ g)(x)$.

We can plug any value into
$$g(x)$$

We need $g(x) \ge 0$ (to take the square root of it)

This gives $x-2\ge 0$
 $x\ge 2$
 $[2,\infty)$

Example. Let
$$f(x) = \frac{1}{x}$$
 and $g(x) = x^2 - 4$. Find the domain of $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

For
$$f(x)$$
, domain is $x \neq 0$

We also need
$$g(x) \neq 0 \Rightarrow x^2 - 4 \neq 0 \Rightarrow x \neq \pm 2$$

Application: Calories Burned as a Function of Time

Fitness tracking often involves calculating the number of calories burned based on the time spent exercising. Suppose you know two things:

1. Distance as a Function of Time:

$$d(t) = 6t$$

• Where t is the time in hours, and d(t) is the distance (in miles) walked in that time.

2. Calories Burned as a Function of Distance:

$$C(d) = 100d$$

• Where d is the distance (in miles), and C(d) is the total calories burned.

We can use function **composition** to calculate the total calories burned as a function of time:

$$C(d(t)) = C(6t) = 100(6t) = 600t.$$

This composition directly links walking time to calories burned. For every hour of walking, the person burns 600 calories.