Half Angle Identities

Definition (Half Angle Identities).

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$$

$$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \frac{\sin\theta}{1+\cos\theta} = \frac{1-\cos\theta}{\sin\theta}$$

Remark. The sign of the square root depends on the quadrant in which $\frac{\theta}{2}$ lies.

Remark. You do not need to memorize the half angle identities. These identities will be listed on a provided formula sheet for the exam. You are responsible for memorizing the reciprocal, quotient, and Pythagorean identities.

Example. Given a right triangle where $\cos \theta = \frac{3}{5}$ and θ is in Quadrant I, evaluate $\sin \left(\frac{\theta}{2}\right)$.

$$Sin\left(\frac{\theta}{2}\right) = \pm \frac{1 - \cos\theta}{2}$$

$$Use the fact that $\frac{\theta}{2}$ is in quadrant 1 and also $\cos\left(\theta\right) = \frac{3}{5}$

$$Sin\left(\frac{\theta}{2}\right) = \frac{1 - 315}{2} = \frac{215}{2} = \frac{1}{5}$$$$

Example. Evaluate $\cos(15^{\circ})$ using a half angle identity.

Note:
$$15^{\circ} = \frac{30^{\circ}}{2}$$
, so:

$$\cos(15^{\circ}) = \cos(\frac{30^{\circ}}{2}) = \pm \sqrt{\frac{1+\cos(30^{\circ})}{2}}$$

Since coscise) > 0 (it's in quadrat 1) and coscisor) =
$$\frac{\sqrt{3}}{3}$$
:

$$Cos(15^3) = \sqrt{\frac{1+\sqrt{13}J_2}{2}} = \sqrt{\frac{2+\sqrt{3}}{2}} = \sqrt{\frac{2+\sqrt{3}}{4}} = \frac{\sqrt{2+\sqrt{3}}}{2}$$

Example. Evaluate $\sin\left(\frac{5\pi}{8}\right)$ using a half angle identity.

Note:
$$\frac{5\pi}{8} = \frac{5\pi/4}{3}$$

$$Sin\left(\frac{S\pi}{8}\right) = Sin\left(\frac{S\pi iq}{2}\right) = \pm \sqrt{\frac{1-\cos(\frac{S\pi}{q})}{2}}$$

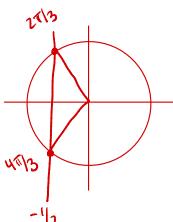
55/8

Since
$$\sin(\frac{5\pi}{8}) > 0$$
 ($\frac{5\pi}{8}$ is in quadrat 2) and $\cos(\frac{5\pi}{4}) = -\frac{\sqrt{2}}{2}$:

$$Sin(S\pi|8) = \sqrt{\frac{1-(-\sqrt{2}|2)}{2}} = \sqrt{\frac{1+\sqrt{2}}{2}} = \sqrt{\frac{2+\sqrt{2}}{2}}$$

Example. Use a half-angle identity to solve the equation

$$\sin^2\left(\frac{x}{2}\right) = \frac{3}{4}, \qquad 0 \le x < 2\pi.$$


$$\sin^2\left(\frac{x}{2}\right) = \left(\sin\left(\frac{x}{2}\right)\right)^2 = \left(\pm \sqrt{\frac{1-\cos x}{2}}\right)^2 = \frac{1-\cos x}{2}$$

Now solve:

$$\frac{1-\cos x}{2} = \frac{3}{4} \implies 1-\cos x = \frac{3}{2}$$

$$= \frac{1 - \cos x}{2}$$

$$\Rightarrow$$
 $\cos x = -\frac{1}{2}$

$$\Rightarrow \cos x = -\frac{1}{2}$$

$$\Rightarrow x = \frac{2\pi}{3} \text{ or } \frac{4\pi}{3}$$