Functions

Introduction

Functions are one of the most powerful tools in mathematics, providing a way to model relationships and behaviors in the real world. This lecture will deepen your understanding of functions by exploring their definitions, domains, and ranges.

Definition of a Function

Definition. What is a function? A function is a relationship where each input corresponds to exactly one output

Notation:

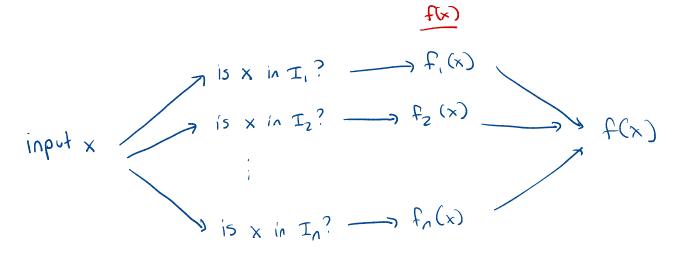
x: input (independent variable)

f: function f takes input f

f(x): output

Example. Let f(x) = 2x + 3. Find f(4).

Example. Evaluate $f(x) = x^2 - 5x + 6$ for x = 3.


If
$$x=3$$
, then $f(3) = 3^2 - 5 \cdot 3 + 6$
= $q - 15 + 6$

Definition. A piecewise function is a function described by __multiple subfunctions

each applying to a specific interval of the domain:

$$f(x) = \begin{cases} f_1(x), & \text{if } x \text{ is in } I_1, \\ f_2(x), & \text{if } x \text{ is in } I_2, \\ \vdots & & \\ f_n(x), & \text{if } x \text{ is in } I_n. \end{cases}$$

Here, $f_1(x)$, $f_2(x)$,..., $f_n(x)$ are the subfunctions and I_1 ,..., I_n are the corresponding intervals for the inputs.

Example. Evaluate the piecewise function:

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0, \\ -2x & \text{if } x < 0. \end{cases}$$

If
$$x = -3$$
, then $f(-3) = -2 \cdot (-3) = 6$

Domain and Range

Definition. The domain of a function f(x) is ______ the set of all inputs

for which the function is defined.

the function can produce.

Example.

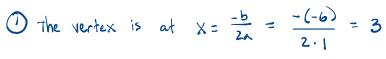
	Function Type	Domain	Range	
	Linear Function: $f(x) = mx + b$	(-∞,∞)	(-00,00)	
	Quadratic Function: $f(x) = ax^2 + bx + c$	(-∞,∞)	Determined by the vertex: a>o: [k, oo) a <o: (-oo,="" k]<="" td=""><td>the parabola points up the parabola points down</td></o:>	the parabola points up the parabola points down
	Square Root Function: $f(x) = \sqrt{x}$	[0,00]	[0, ∞)	points down We cannot take the
	Linear Function	Quadratic Function	Square Root Function	savere>+
-10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{4} f(x)$ $\frac{1}{4} f(x)$ $\frac{1}{2} f(x)$ $\frac{1}{4} f(x)$ $\frac{1}$	negative

Example. Find the domain and range of $f(x)=\sqrt{x+2}$ Typically you can set up an inequality to find your domain/range

We need $x+2 \ge 0 \Rightarrow x \ge -2 \Rightarrow [-2, \infty)$ Domain:

Taking the square not of something can only produce values 0 and above. [0,00)

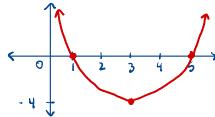
Quadratic Formula: -b+ 162-4ac


Quadratic Functions and the Vertex Formula

Vertex Formula for Quadratic Functions

For $f(x) = ax^2 + bx + c$, the vertex is given by:

$$x = -\frac{b}{2a}, \quad f(x) = f\left(-\frac{b}{2a}\right).$$

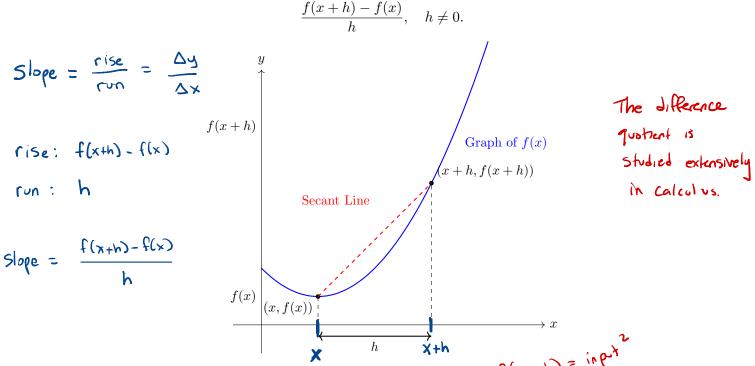

Example: Find the vertex of $f(x) = x^2 - 6x + 5$.

The y-coord is $f(3) = 3^2 - 6(3) + 5 = -4$

=> The vertex is (3,-4)

Example. Find the range of $f(x) = x^2 - 4$.

where is
$$f(x) = 0$$
?
We need to solve $x^2 - 6x + 5 = 0$
 $\Rightarrow (x-5)(x-1) = 0$


=> X=5 or X=1

Vertex: The x-coord is
$$x = \frac{-b}{2a} = \frac{0}{2.1} = 0$$

The y-coord is $f(0) = 0^2 - 4 = -4$

The range is [-4,00) because the parabola points up

The Difference Quotient

Definition. The difference quotient is a measure of the average rate of change of a function over an interval. It represents the slope of the secant line between two points on the graph of a function f(x) separated by a horizontal distance h:

Example. Compute the difference quotient for $f(x) = x^2$

 $\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{2xh + h^2}{h} = \frac{K(2x+h)}{K}$

= 2x+h

Common
exam question
is to comple
the difference
quotient of a
function

Example. Compute the difference quotient for f(x) = 3x - 4

$$\frac{f(x+h) - f(x)}{h} = \frac{[3(x+h) - 4] - [3x - 4]}{h}$$

$$= \frac{3x + 3h - 4 - 3x + 4}{h} = \frac{3h}{h} = 3$$

Applications

Example. The drug dosage D(w) that a doctor prescribes is a function of the patient's weight w.

Example. The amount of money earned E(h) is a function of the number of hours h worked.