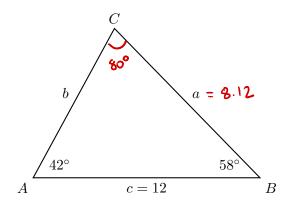
Laws of Sines and Cosines

Theorem (Law of Sines). In any triangle with angles A, B, and C, and opposite sides a, b, and c, respectively, the Law of Sines states:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Example. Use the Law of Sines to find all sides and angles of the given triangle.



$$\frac{\sin A}{a} = \frac{\sin C}{c} \Rightarrow \frac{\sin(42^{\circ})}{a} = \frac{\sin(80^{\circ})}{12}$$

$$\alpha = 12 \cdot \frac{\sin(42^{\circ})}{\sin(80^{\circ})} \approx 8.12$$

$$\frac{3}{b} = \frac{\sin C}{c} \Rightarrow \frac{\sin(58^\circ)}{b} = \frac{\sin(88^\circ)}{12}$$

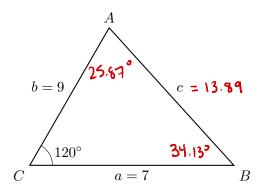
$$b = 12 \cdot \frac{\sin(58^\circ)}{\sin(80^\circ)} \approx 10.20$$

Theorem (Law of Cosines). In any triangle with sides a, b, and c, and corresponding opposite angles A, B, and C, the Law of Cosines states:

This can be rewritten for other sides:

$$a^2 = b^2 + c^2 - 2bc \cos A$$
 and $b^2 = a^2 + c^2 - 2ac \cos B$

Example. Use the Law of Cosines to find all sides and angles of the given triangle.



$$C^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$C^{2} = 7^{2} + 9^{2} - 2.7.9 \cos 120^{\circ}$$

$$C^{2} = 49 + 81 - 126 \left(-\frac{1}{2}\right)$$

$$C^{2} = 193$$

$$C = \sqrt{193} \approx 13.89$$

(2)
$$b^2 = a^2 + c^2 - 2ac \cos B$$

 $q^2 = 7^2 + (\sqrt{193})^2 - 2.7.\sqrt{193} \cos B$
 $81 = 49 + 193 - 14\sqrt{193} \cos B$
 $-161 = -14\sqrt{193} \cos B$
 $\cos B = \frac{-161}{-14\sqrt{193}} = 0.828$
 $B = \cos^{-1}(0.828) = 34.13^\circ$

Theorem (Ambiguous Case for the Law of Sines). When using the Law of Sines to solve for an angle, applying the inverse sine function may lead to *two possible angle values*, resulting in what is known as the **ambiguous case**.

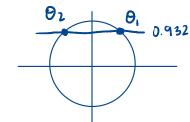
Possible outcomes:

- Two triangles: If both θ and $180^{\circ} \theta$ lead to valid triangle angle measures, then two distinct triangles are possible.
- One triangle: If only one of the two angle values leads to a valid triangle, then exactly one triangle is possible.
- No triangle: If $\sin \theta > 1$ or neither angle produces valid measures, then no triangle can be formed.

Example. Find all sides and angles of the given triangle.

$$\frac{\sin A}{a} = \frac{\sin C}{c} \Rightarrow \frac{\sin (51^{\circ})}{10} = \frac{\sin C}{12}$$

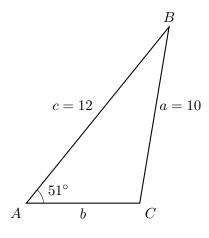
$$\Rightarrow \sin C = \frac{12}{10} \cdot \sin(51^{\circ}) \approx 0.9325$$

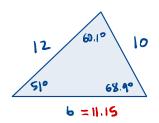


Both 0, and 02

are possible angles

in a trangle





$$b^2 = 10^2 + 12^2 - 2 \cdot 10 \cdot 12 \cos(60.1^3)$$

(2)
$$C = 180^{\circ} - 510^{-1}(9.9325) = 111.1^{\circ}$$

 $B = 180^{\circ} - 51^{\circ} - 111.1^{\circ} = 17.1^{\circ}$

