Inverse Trigonometric Identities

Definition. The inverse sine function $\sin^{-1}(x)$, also written as $\arcsin(x)$, is the angle θ such that $\sin(\theta) = x$, where θ is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

Domain:
$$-1 \le x \le 1$$
 Range: $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

Definition. The inverse cosine function $\cos^{-1}(x)$, also written as $\arccos(x)$, is the angle θ such that $\cos(\theta) = x$, where θ is between 0 and π .

Domain:
$$-1 \le x \le 1$$
 Range: $0 \le \theta \le \pi$

Definition. The inverse tangent function $\tan^{-1}(x)$, also written as $\arctan(x)$, is the angle θ such that $\tan(\theta) = x$, where θ is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (but not equal to $\pm \frac{\pi}{2}$).

Domain: all real numbers
$$x \in \mathbb{R}$$
 Range: $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$

Example. Evaluate $\cos^{-1}(\cos(\frac{\pi}{3}))$

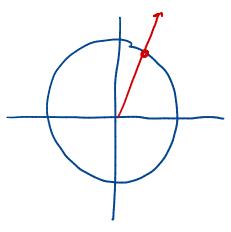
$$\cos^{-1}\left(\cos\left(\frac{\pi}{3}\right)\right) = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

"The angle in $[0, \pi]$ whose cosine is $\frac{1}{3}$ "

We got back what

we started with, since

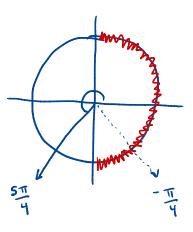
To, To



Example. Evaluate $\sin^{-1}(\sin(\frac{5\pi}{4}))$

$$Sin^{-1}\left(Sin\left(\frac{ST}{4}\right)\right) = Sin^{-1}\left(-\frac{Jz}{2}\right) = \boxed{-\frac{\pi}{4}}$$

We did not get back what we started with, since
$$ST$$
 is not in $[-T]$, T



True False: For any θ in $(-\infty, \infty)$, the following identity holds: $\sin^{-1}(\sin(\theta)) = \theta$.

arcsin outputs an angle in $[-{\mathbb{I}}, {\mathbb{I}}]$. So if Θ is outside of this interval, we Won't get back what we started with.

True False: For any x in [-1,1], the following identity holds: $\sin(\sin^{-1}(x)) = x$.

$$Sin^{-1}(x)$$
 gives you an angle θ in $[-\frac{\pi}{2}, \frac{\pi}{2}]$ whose sine is x .

Analogy:
Let
$$f(x) = x^2$$
 and $f^{-1}(x) = Jx$

$$f(f^{-1}(x)) = (Jx)^2 \text{ is always } x, \text{ but}$$

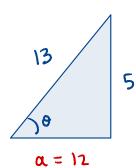
$$f^{-1}(f(x)) = Jx^2 \text{ is not always } x$$

$$2 \xrightarrow{f} 4 \xrightarrow{f^{-1}} 2 \qquad \times$$

$$-2 \xrightarrow{f} 4 \xrightarrow{f^{-1}} 2 \qquad \times$$

Example. Evaluate $\cos\left(\sin^{-1}\left(\frac{5}{13}\right)\right)$

x is not a standard value on the unit circle, we can use triangles

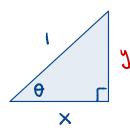


- · Draw the triangle so that $\theta = \sin^{-1}(\frac{\pi}{13})$
- Solve the triangle: $a = \sqrt{13^2 5^2} = 12$
 - $\cos \theta = \frac{a}{b} = \frac{12}{13}$

Example. Rewrite the expression as an algebraic expression in terms of x:

 $\tan\left(\cos^{-1}(x)\right)$

Can do this with reference triangles



Solve for
$$y: y=\sqrt{1-x^2}$$

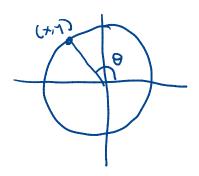
$$\tan(\theta) = \frac{0}{a} = \frac{\sqrt{1-x^2}}{x}$$

eference triangles

That $\theta = \cos^{-1}(x)$ Solve for $y: y = \sqrt{1-x^2}$ $As long as you know this only illustrates the (

<math>\theta$ in $[0, \mathbb{T}]$ even though θ be any angle

How I would do this:



cost(x) is the angle 0 in [0, 17]

with x-coord X. Then the y-coord is $y = \sqrt{1-x^2}$, since we are on the unit

circle. Hence $tan(\theta) = \frac{y}{x} = \frac{\sqrt{1-x^2}}{x}$