Inverse Trigonometric Functions

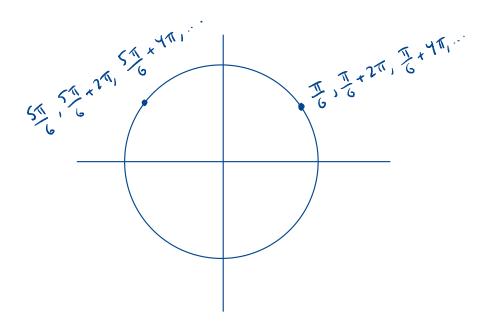
The trig functions $\sin(\theta)$ and $\cos(\theta)$ take an angle and tell you a point on the unit circle:

 $\sin(\theta)$ is the y-coordinate of the point at angle θ

 $\cos(\theta)$ is the x-coordinate of the point at angle θ

Question: Can we define functions to go the other way? Given an x- or y-coordinate on the unit circle, can we output the angle θ on the unit circle with that particular x- or y-coordinate?

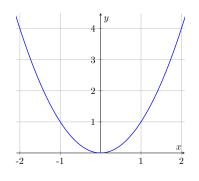
Issue: There are infinitely many angles with a particular x- or y-coordinate. To define a function, we can only have one output.



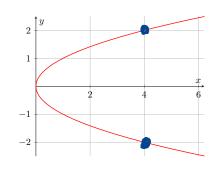
If we want θ so that $\sin \theta = \frac{1}{2}$, how do we decide which θ to choose?

There are infinitely many θ with $\sin \theta = \frac{1}{2}$, but to define a function, we must choose one.

How we answered this question with $f(x) = x^2$



$$f(x) = x^2$$

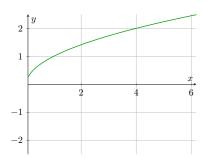


This is what the "actual" inverse

should look like

(right? 4 comes from)
both -2 and 2

Issue: NOT a function!



Fix: by convention, we declare the Squere not FUNCTION to choose the positive squere not.

Is a function!

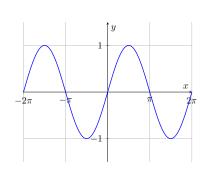
Things get wacky.

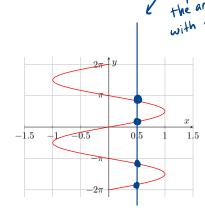
$$(2) \xrightarrow{f(x)=x^2} (4) \xrightarrow{f^{-1}(x)=\int x} (2) \checkmark$$

$$\left(-2\right)\frac{f(x)}{}$$

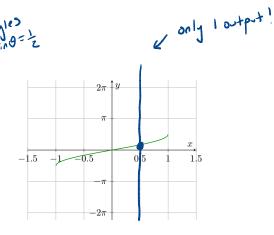
$$(4) \xrightarrow{f^{-1}(x)=J\times} (2)$$

The inverse of sin(x)



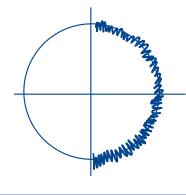


This is what the inverse "should" look like, except it is not a function



Fix: find an interval with no repeats...

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 works!



Big idea: every angle in $[-\frac{\pi}{2}, \frac{\pi}{2}]$ has a unique y-coordinate and we cover all possibilities!

(we could have chosen [王, 翌] or [翌, 翌],etc...)

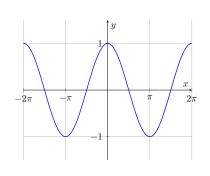
Definition. The **inverse sine function**, written as $\arcsin(x)$ or $\sin^{-1}(x)$, tells you the angle whose sine is x.

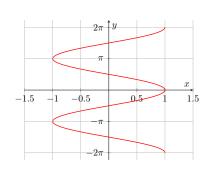
We only output angles between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, because that is an interval where the sine graph doesn't repeat.

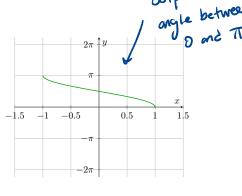
Question. What is the domain of $\arcsin(x)$?

Question. What is the range of $\arcsin(x)$?

The inverse of cos(x)

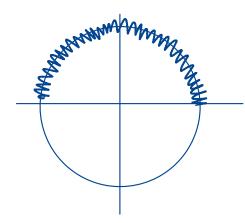






(x)?a)

arccos(x)



Similarly, angles in [D,T]
have unique x-coordinates
and we cover all possibilities.

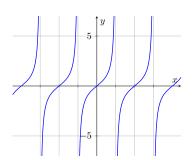
Definition. The inverse cosine function, written as $\arccos(x)$ or $\cos^{-1}(x)$, tells you the angle whose cosine is x.

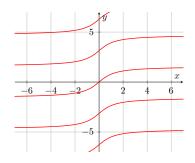
We only output angles between 0 and π , because that is an interval where the cosine graph doesn't repeat.

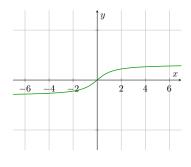
Question. What is the domain of arccos(x)?

Question. What is the range of arccos(x)?

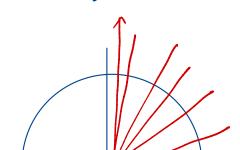
The inverse of tan(x)







arctan(x)



Angles in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ have unique slopes and cover all possibilities

Note: - I and I have undefined tangent, so this is an open interval

Definition. The **inverse tangent function**, written as $\arctan(x)$ or $\tan^{-1}(x)$, tells you

the angle whose that is an interval where the tangent We only output angles between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, because that is an interval where the tangent graph doesn't repeat.

Question. What is the domain of arctan(x)?

$$(-\infty,\infty)$$
 e the slope can be anything!

Question. What is the range of $\arctan(x)$?

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 & output the unique θ with the given slope.