Trigonometric Identities

This section covers fundamental trigonometric identities: the Pythagorean, reciprocal, quotient, even/odd, and cofunction identities.

Pythagorean Identities

Definition. The fundamental identity derived from the unit circle $x^2 + y^2 = 1$ is:

$$\sin^2\theta + \cos^2\theta = 1.$$

From this, we obtain two additional identities:

$$1 + \tan^2 \theta = \sec^2 \theta$$
 and $1 + \cot^2 \theta = \csc^2 \theta$.

Reciprocal and Quotient Identities

Definition (Reciprocal Identities).

$$\csc \theta = \frac{1}{\sin \theta},$$

$$\sec \theta = \frac{1}{\cos \theta}, \qquad \cot \theta = \frac{1}{\tan \theta}.$$

$$\cot \theta = \frac{1}{\tan \theta}.$$

Definition (Quotient Identities).

$$\tan\theta = \frac{\sin\theta}{\cos\theta},$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}.$$

Using Identities in Different Quadrants

Example. Given $\tan \theta = -\frac{3}{4}$ and θ is in quadrant II, find $\sin \theta$ and $\cos \theta$.

Even/Odd and Cofunction Identities

Definition (Even/Odd Identities).

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\sec(-\theta) = \sec\theta$$

$$\csc(-\theta) = -\csc\theta$$

$$\cot(-\theta) = -\cot\theta$$

Definition (Cofunction Identities).

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$
$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$
$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

Simplifying Expressions

Example. Simplify $\frac{\sin \theta}{\tan \theta}$ to a form without quotients.

Verifying Identities

Example. Verify the identity:

$$\tan \theta + \cot \theta = \sec \theta \csc \theta.$$