Trigonometric Identities

This section covers fundamental trigonometric identities: the Pythagorean, reciprocal, quotient, even/odd, and cofunction identities.

Pythagorean Identities

Definition. The fundamental identity derived from the unit circle $x^2 + y^2 = 1$ is:

$$\sin^2\theta + \cos^2\theta = 1.$$

From this, we obtain two additional identities:

$$1 + \tan^2 \theta = \sec^2 \theta$$
 and $1 + \cot^2 \theta = \csc^2 \theta$.

For all
$$\theta$$
, the point

(cos θ , sin θ)

(cos θ , sin θ) is on the

unit circle. So

(cos θ)² + (sin θ)² = 1

Cos² θ + sin² θ = 1

$$\frac{\cos^2\theta + \sin^2\theta = 1}{\cos^2\theta} = \frac{\cos^2\theta + \sin^2\theta = 1}{\sin^2\theta}$$

$$\frac{\cos^2\theta + \sin^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta}$$

Reciprocal and Quotient Identities

Definition (Reciprocal Identities).

Definition (Quotient Identities).

$$\csc \theta = \frac{1}{\sin \theta},$$

$$\csc \theta = \frac{1}{\sin \theta}, \qquad \sec \theta = \frac{1}{\cos \theta},$$

$$\cot \theta = \frac{1}{\tan \theta}.$$

 $\cot \theta = \frac{1}{\tan \theta}$. The tand is defined. The tand is

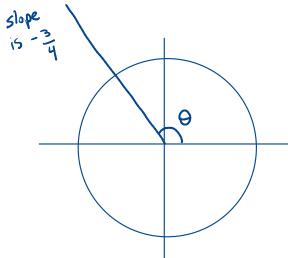
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
. Note: $\cot (\frac{\pi}{2}) = 0$ but $\cot (\frac{\pi}{2})$ D.N.E.

Using Identities in Different Quadrants

Example. Given $\tan \theta = -\frac{3}{4}$ and θ is in quadrant II, find $\sin \theta$ and $\cos \theta$.

 $\tan \theta = \frac{\sin \theta}{\cos \theta},$



$$(1) + \tan^2 \theta = \sec^2 \theta$$

$$1 + \left(-\frac{3}{4}\right)^2 = \sec^3\theta$$

$$1+\frac{9}{16}=\frac{1}{\cos^2\theta}$$

$$\frac{25}{16} = \frac{1}{\cos^2 \theta}$$

$$\cos^2\theta = \frac{16}{25} \Rightarrow \cos\theta = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}$$

Since
$$\cos \theta < 0$$
 (θ in Quadrant II), $\cos \theta = -\frac{4}{5}$

$$(2) \quad \sin^2\theta + \cos^2\theta = 1$$

$$\sin^2\theta + \left(\frac{-4}{5}\right)^2 = 1$$

$$\sin^2 \theta + \frac{16}{25} = 1 \implies \sin^2 \theta = \frac{9}{25} \implies \sin \theta = \pm \sqrt{\frac{9}{25}} = \pm \frac{3}{5}$$

$$2 \qquad \qquad \sin \theta > 0 \implies \sin \theta = \frac{3}{5}$$

Even/Odd and Cofunction Identities

099: £(-x) = - £(x)

even: f(-x) = f(x)

Definition (Even/Odd Identities).

$$\sin(-\theta) = -\sin\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\csc(-\theta) = -\csc\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\sec(-\theta) = \sec\theta$$

$$\cot(-\theta) = -\cot\theta$$

Definition (Cofunction Identities).

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

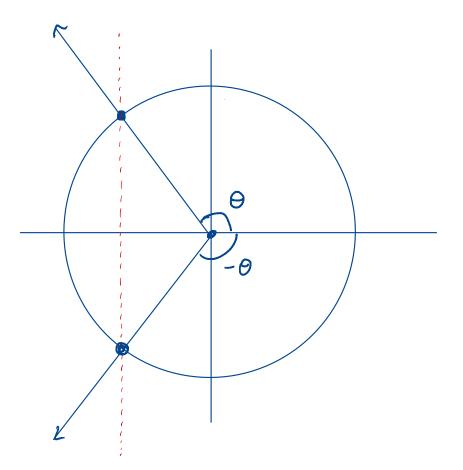
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

Q: Why is sind odd? Why is coso even?

A: B and -B correspond to the same x-courd on the unit circle, but opposite y-courds



Simplifying Expressions

Example. Simplify $\frac{\sin \theta}{\tan \theta}$ to a form without quotients.

$$\frac{\sin \theta}{\tan \theta} = \frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}} = \sin \theta \cdot \frac{\cos \theta}{\sin \theta} = \cos \theta$$

Verifying Identities

Example. Verify the identity:

$$\tan \theta + \cot \theta = \sec \theta \csc \theta$$
.

$$\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta}{\cos \theta \cdot \sin \theta} + \frac{\cos^2 \theta}{\cos \theta \cdot \sin \theta}$$

$$= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \cdot \sin \theta}$$

$$= \frac{1}{\cos \theta \cdot \sin \theta}$$

$$= \frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta}$$

$$= \sec \theta \cdot \csc \theta$$