
## Right Triangle Trigonometry

**Theorem.** Consider a right triangle with an acute angle  $\theta$  as shown below. The six trigonometric functions can be defined in terms of the sides of the triangle as follows:



$$\sin(\theta) =$$
 $\csc(\theta) =$ 

$$\cos(\theta) = \sec(\theta) =$$

$$\tan(\theta) = \cot(\theta) =$$

| Evaluating Trigonometric Functions |               |               |                     |             |              |              |        |       |
|------------------------------------|---------------|---------------|---------------------|-------------|--------------|--------------|--------|-------|
| Example.                           | Given a right | triangle with | an angle $\theta$ , | suppose the | side opposit | $\theta$ has | length | 3 and |

the adjacent side has length 4. Evaluate all six trigonometric functions at  $\theta$ .

Using a Given Trigonometric Value

**Example.** If  $\sin \theta = \frac{5}{13}$  for an acute angle  $\theta$  in a right triangle, find the remaining five trigonometric functions.

## Application Example

**Example.** A ladder leans against a wall, forming a  $60^{\circ}$  angle with the ground. If the bottom of the ladder is 4 feet from the wall, determine the length of the ladder.