The Other Trigonometric Functions

Previously, we focused on the trigonometric functions:

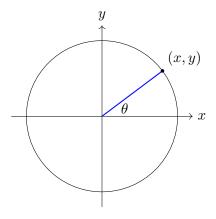
$$\sin \theta$$
 and $\cos \theta$.

Now we expand our study to the other four trigonometric functions:

$$\tan \theta$$
, $\sec \theta$, $\csc \theta$, $\cot \theta$.

Finding $\tan \theta$ from the Unit Circle

Recall that when an angle θ is drawn in standard position, the point where its terminal side intersects the unit circle has coordinates $(x, y) = (\cos \theta, \sin \theta)$.



The tangent of an angle θ is defined as

provided $x \neq 0$

Question. Explain why $\tan \theta$ can be interpreted as the slope of the terminal side of the angle θ .

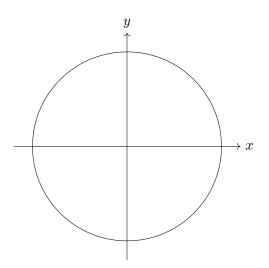
Question. What are the domain and range of $\tan \theta$?

Finding $\sec \theta$, $\csc \theta$, and $\cot \theta$ from the Unit Circle

Definition. Let θ be an angle in standard position whose terminal side passes through the point (x,y) in the plane, and let $r=\sqrt{x^2+y^2}$ be the distance from the point to the origin. Then the three additional trigonometric functions are defined by

$$\sec(\theta) = \frac{r}{x}, \quad \csc(\theta) = \frac{r}{y}, \quad \cot(\theta) = \frac{x}{y}.$$

When r=1 (i.e. on the unit circle), these definitions reduce to



Function	Domain	Range
$\sec(\theta)$		$(-\infty, -1] \cup [1, \infty)$
$\csc(\theta)$		$(-\infty, -1] \cup [1, \infty)$
$\cot(\theta)$		$(-\infty,\infty)$

Function	I	II	III	IV
$\sin \theta$				
$\cos \theta$				
$\tan \theta$				
$\cot \theta$				
$\sec \theta$				
$\csc \theta$				

Example. Compute $\tan(225^{\circ})$.

Example. Compute $\sec\left(\frac{\pi}{3}\right)$.

Example. Compute $\cot\left(\frac{2\pi}{3}\right)$.