The Other Trigonometric Functions

Previously, we focused on the trigonometric functions:

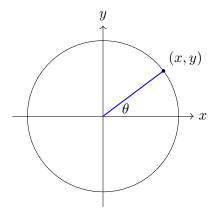
$$\sin \theta$$
 and $\cos \theta$.

Now we expand our study to the other four trigonometric functions:

$$\tan \theta$$
, $\sec \theta$, $\csc \theta$, $\cot \theta$.

Finding $\tan \theta$ from the Unit Circle

Recall that when an angle θ is drawn in standard position, the point where its terminal side intersects the unit circle has coordinates $(x, y) = (\cos \theta, \sin \theta)$.



The tangent of an angle θ is defined as

$$\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$$

provided $x \neq 0$

Question. Explain why $\tan \theta$ can be interpreted as the slope of the terminal side of the angle θ .

Slope =
$$\frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y}{x} = tan \theta$$

Question. What are the domain and range of $\tan \theta$?

tangents
(i.e. X=0)

Domain: Slopes exist everywhere except at angles aterminal with $\frac{\pi}{2}$ or $\frac{3\pi}{2}$ $\Rightarrow \theta \neq \frac{\pi}{2} + k\pi$ where k is an integer.

Range: We can produce a terminal side, with any slope we want: $(-\infty, \infty)$

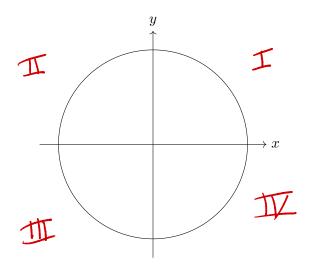
Finding $\sec \theta, \csc \theta$, and $\cot \theta$ from the Unit Circle

Definition. Let θ be an angle in standard position whose terminal side passes through the point (x, y) in the plane, and let $r = \sqrt{x^2 + y^2}$ be the distance from the point to the origin. Then the three additional trigonometric functions are defined by

$$\sec(\theta) = \frac{r}{x}, \quad \csc(\theta) = \frac{r}{y}, \quad \cot(\theta) = \frac{x}{y}.$$

When r = 1 (i.e. on the unit circle), these definitions reduce to

$$Sec \theta = \frac{1}{X} = \frac{1}{\cos \theta}$$
, $csc \theta = \frac{1}{y} = \frac{1}{\sin \theta}$, $cot \theta = \frac{x}{y} = \frac{\cos \theta}{\sin \theta}$



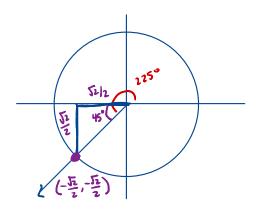
	Function	Domain	Range					
X≠0 →	$\sec(\theta)$	0 + = + KT	$(-\infty, -1] \cup [1, \infty)$	4				
y \$ 0 3	$\csc(\theta)$	0 ≠ kT	$(-\infty, -1] \cup [1, \infty)$					
y +0 ->	$\cot(\theta)$	0 \$ KTT	$(-\infty,\infty)$					
Vis an intener								

$$-1 \in \cos \theta \le 1$$
 \Rightarrow Sec $\theta \ge 1$ or Sec $\theta \le -1$

Function	I	II	III	IV	
$\sin \theta$	+	+	_	_	
$\cos \theta$	+	_	_	+	slopes
$\tan \theta$	+	_	+	_	
$\cot \theta$	+	_	+	_	
$\sec \theta$	+	_	_	+	
$\csc \theta$	+	+	_	_	

$$\cot \theta = \frac{x}{y}$$
, $\sec \theta = \frac{1}{x}$, $\csc \theta = \frac{1}{y}$

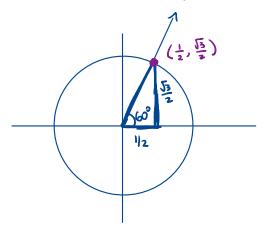
Example. Compute $tan(225^{\circ})$.



$$\tan (225^{\circ}) = \frac{y}{x} = \frac{\sin \theta}{\cos \theta} = \frac{-\sqrt{2}/2}{-\sqrt{2}/2} = 1$$

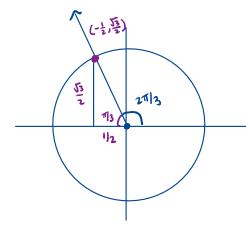
This is a line with slope 1.

Example. Compute $\sec\left(\frac{\pi}{3}\right)$.



$$Sec\left(\frac{\pi}{3}\right) = \frac{1}{Cos(\pi_{|3})} = \frac{1}{X} = \frac{1}{1/2} = 2$$

Example. Compute $\cot\left(\frac{2\pi}{3}\right)$.



$$\cot\left(\frac{2\pi}{3}\right) = \frac{\cos(2\pi I_3)}{\sin(2\pi I_3)} = \frac{x}{y} = \frac{-1I_2}{J_3I_2}$$

$$= -\frac{1}{2} \cdot \frac{2}{J_3} = -\frac{1}{J_3} = \frac{-J_3}{3}$$

$$\frac{-1}{J_3} \cdot \frac{J_3}{J_3} = \frac{-J_3}{J_3} = \frac{-J_3}{J_3}$$