
Angles, Radians, Area, and Arc Length

Angles as Measures of Rotation

Definition. An angle is defined as the measure of rotation between two rays (sides) sharing a common endpoint (vertex).
• Initial Side: the fixed, starting side.
• Terminal Side: the side that rotates about the vertex.
Definition. Angle measures can be positive or negative depending on the direction of rotation:
• Positive angles are defined by rotations in the direction
• Negative angles are defined by rotations in the direction
Units for Measuring Angles
Definition. Angles are measured in two primary units:
• Degrees: One complete rotation is
• Radians: A radian is defined as at the cent
of a circle by an arc whose length is equal to the radius of the circle. One full rotation equa
·

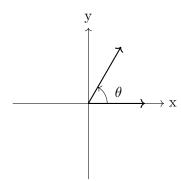
Example. Draw rotations measuring 1, 2, and 3 radians.

Since a full circle is 360° and also 2π radians, we derive the conversion factors:

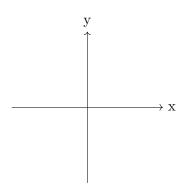
1 radian =
$$\frac{180^{\circ}}{\pi}$$
, $1^{\circ} = \frac{\pi}{180}$ radians.

Example. Convert 45° to radians.

Example. Convert $\frac{5\pi}{6}$ radians to degrees.


Example. Convert 120° to radians.

Example. Convert $\frac{7\pi}{4}$ radians to degrees.


The Coordinate Plane

Definition. An angle is in **standard position** if its vertex is ______ and

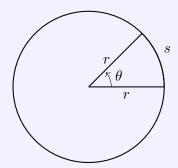
its initial side lies along the ______.

Definition. The Cartesian plane is divided into four quadrants:

Coterminal Angles

Definition. Coterminal angles _______ but

Example. Find an angle coterminal with 30° .


Arc Length

Definition. The arc length of a circle is the distance along the curved line forming the arc. The arc length s can be computed using:

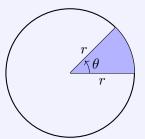
• Radians: $s = r\theta$

• Degrees: $s = \frac{\pi r \theta}{180}$

where θ is the central angle in either radians or degrees, respectively.

Example. Find the length of an arc in a circle with radius 5 cm and central angle 60° .

Example. Find the length of an arc in a circle with radius 10 m and central angle $\frac{\pi}{4}$ radians.


Example. A circle has an arc length of 8π cm and a radius of 4 cm. Find the central angle in radians.

Example. A circle has an arc length of 20 cm and a central angle of 90°. Find the radius.

Area of a Sector

Definition. The **sector area** A subtended by a central angle θ in a circle of radius r is given by:

$$A = \begin{cases} \frac{1}{2}r^2\theta & \text{(radians)} \\ \frac{\pi r^2\theta}{360} & \text{(degrees)} \end{cases}$$

