
Angles, Radians, Area, and Arc Length

Angles as Measures of Rotation

Definition. An **angle** is defined as the measure of rotation between two rays (sides) sharing a common endpoint (vertex).

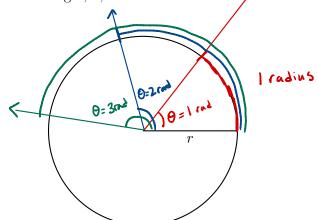
- Initial Side: the fixed, starting side.
- Terminal Side: the side that rotates about the vertex.

Definition. Angle measures can be positive or negative depending on the direction of rotation:

- Positive angles are defined by rotations in the ______ conterclock wise _____ direction.
- Negative angles are defined by rotations in the direction.

Units for Measuring Angles

Definition. Angles are measured in two primary units:


• Degrees: One complete rotation is 360° .

• Radians: A radian is defined as ______ the angle traced out _____ at the center

of a circle by an arc whose length is equal to the radius of the circle. One full rotation equals

2TT radians

Example. Draw rotations measuring 1, 2, and 3 radians.

Half of the circle

Since a full circle is 360° and also 2π radians, we derive the conversion factors:

1 radian =
$$\frac{180^{\circ}}{\pi}$$
, $1^{\circ} = \frac{\pi}{180}$ radians.

Example. Convert 45° to radians.

$$1^{\circ} = \frac{2\pi}{360} \text{ radius} \qquad \left(\frac{360}{2\pi}\right)^{\circ} = 1 \text{ rad}$$

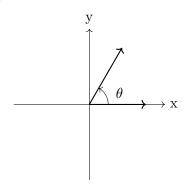
360° = 2T radians

Example. Convert
$$\frac{5\pi}{6}$$
 radians to degrees.

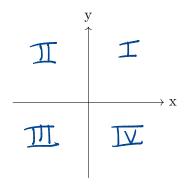
$$\frac{5\pi}{6}$$
 and = $\frac{5\pi}{6}$. Lad = $\frac{5\pi}{6}$. $\frac{160^{\circ}}{\pi}$ = 5.30° = 150°

Example. Convert 120° to radians.

$$120 \cdot \frac{\pi}{160} = \frac{2\pi}{3} \text{ radians}$$


Example. Convert $\frac{7\pi}{4}$ radians to degrees.

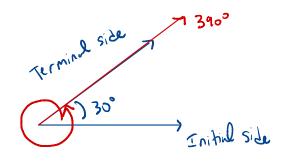
$$\frac{7\pi}{4} \text{ rad} = \frac{7\pi}{4} \cdot \text{ lad} = \frac{7\pi}{4} \cdot \frac{160^{\circ}}{\pi} = 315^{\circ}$$


The Coordinate Plane

Definition. An angle is in standard position if its vertex is __at the origin and

its initial side lies along the Positive X-Axis

Definition. The Cartesian plane is divided into four quadrants:



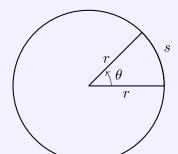
Coterminal Angles

Definition. Coterminal angles Share the Same terminal side by

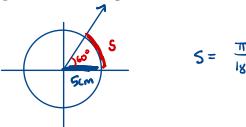
differ by full notations (360° or 2TT rad)

Example. Find an angle coterminal with 30° .

Arc Length

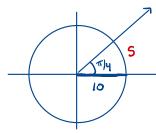

Definition. The arc length of a circle is the distance along the curved line forming the arc. The arc length s can be computed using:

The arc length s can be computed using.

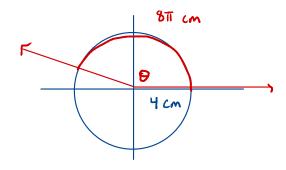

• Radians: $s = r\theta$ • Degrees: $s = \frac{\pi r\theta}{180}$ • Multiplying by r gives the absolute distinct.

where θ is the central angle in either radians or degrees, respectively.

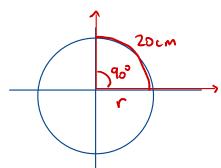
Convert the angle



Example. Find the length of an arc in a circle with radius 5 cm and central angle 60°.


$$5 = \frac{\pi}{180} \Theta \cdot r = \frac{\pi}{180} \cdot 60 \cdot 5 = \frac{5\pi}{3} cm$$

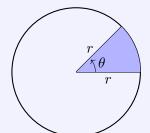
Example. Find the length of an arc in a circle with radius 10 m and central angle $\frac{\pi}{4}$ radians.


$$S = r \cdot \Theta = 10 \cdot \frac{\pi}{4} = \frac{10\pi}{4} = \frac{5\pi}{2} m$$

Example. A circle has an arc length of 8π cm and a radius of 4 cm. Find the central angle in radians.

$$S = r \cdot \theta$$

Example. A circle has an arc length of 20 cm and a central angle of 90°. Find the radius.


$$S = \frac{\pi}{180} r \theta$$

$$20 = \frac{\pi}{2}r$$
 \Rightarrow $r = \frac{40}{\pi} \approx 12.73 cm$

Area of a Sector

Definition. The **sector area** A subtended by a central angle θ in a circle of radius r is given by:

$$A = \begin{cases} \frac{1}{2}r^2\theta & \text{(radians)} \\ \frac{\pi r^2\theta}{360} & \text{(degrees)} \end{cases}$$

Why? Area of circle is Tr2

In each case, decide what fraction of the circle the sector is ...

- 1) Degrees. The fraction is $\frac{\theta}{360}$. $A = \frac{\theta}{360} \cdot \pi r^2$
- (2) Radians. The fraction is $\frac{\theta}{2\pi}$.

$$A = \frac{\theta}{2\pi} \cdot \pi r^2 = \frac{1}{2} r^2 \theta$$

