Logarithmic Functions

Definition. Let a be a positive real number such that $a \neq 1$. The **logarithmic function** with base a is defined by

$$f(x) = \log_a(x),$$

for all x > 0. This function is the inverse of the exponential function a^x . In other words, for any x > 0 and real number y, we have

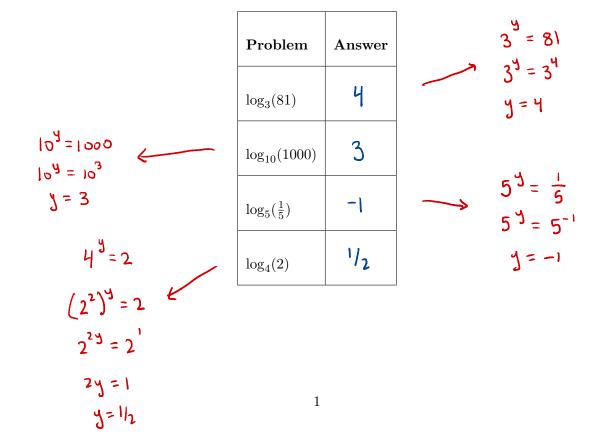
$$y = \log_a(x) \iff a^y = x.$$

Evaluating Logarithmic Expressions

Example. Evaluate the expression $log_2(8)$.

$$\log_2(8) = y \iff 2^y = 8$$
$$2^y = 2^3$$
$$y = 3$$

Example. Evaluate the following expressions.



Graphing Logarithmic Functions

The graph of the logarithmic function $f(x) = \log_a(x)$ (with a > 1) has several key features that help us understand its behavior:

• Domain:

$$(0, \infty)$$
. $\log_a(x) = y$ means that $\alpha^y = x$. If $\alpha > 0$ then $\alpha^y > 0$. So $x > 0$.

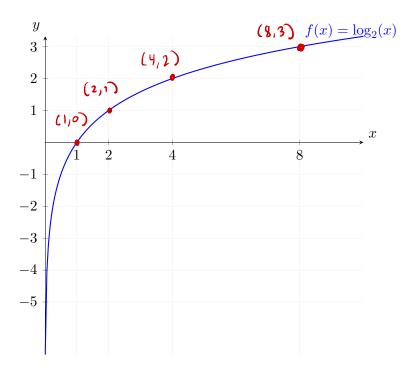
• Range:

• Vertical Asymptote:

The line
$$X=0$$
 is an asymptote. As $X\to 0$ from the right, we evaluate things like $\log_a(0.00001)$. This means $a^y=0.00001$ and y is a large neg. number

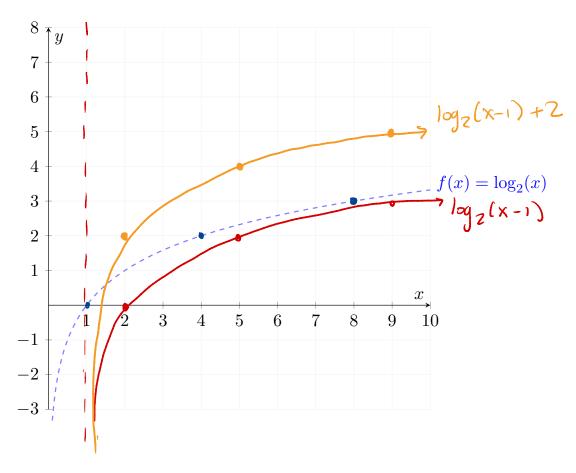
• End Behavior:

Below is an example graph of the function $f(x) = \log_2(x)$ to illustrate these features:



Graph Transformations

Example. Graph the function $g(x) = \log_2(x-1) + 2$.



- · Shift right 1 · shift up 2

Common and Natural Logarithms

Definition.

• The **common logarithm** is the logarithm with base 10:

$$\log(x) = \log_{10}(x).$$

• The **natural logarithm** is the logarithm with base e (where $e \approx 2.71828$):

$$ln(x) = \log_e(x).$$

Finding Domains of Logarithmic Functions

Example. Determine the domain of the function $f(x) = \ln(4-x^2)$, express your answer in interval notation.

We need
$$4-x^2 > 0$$

$$\Rightarrow x^2 < 4$$

$$\Rightarrow -2 < x < 2$$

$$(-2, 2)$$

Example. Determine the domain of the function $g(x) = \log_3(2x+1)$, and express your answer in interval notation.

We need
$$2x+1>0$$

 $2x>-1$
 $x>-\frac{1}{2}$

$$\left(-\frac{1}{2},\infty\right)$$

Inverses of Exponential and Logarithmic Functions

Exponential and logarithmic functions are inverses of each other. In general,

$$f(x) = a^x \iff f^{-1}(x) = \log_a(x).$$

Example. Find the inverse of $f(x) = 3^x$.

$$y = 3^{\times}$$
 $\log_3(y) = \times$ (by def of $\log_3(y)$

$$f^{-1}(x) = \log_3(x)$$

Example. Find the inverse of $g(x) = \log_5(x)$.

$$y = \log_5(x)$$

$$5^y = x$$

$$g^{-1}(x) = 5^x$$