Exponential Functions

Definition of the Exponential Function

Definition. Let a be a positive real number with $a \neq 1$. The exponential function with base a is defined by

$$f(x) = a^{x}$$

Graphs and Transformations of Exponential Functions

The exponential function $f(x) = a^x$ has the following properties:

- Domain: (-∞, ∞)
- Range: (0, ∞)
- End Behavior:

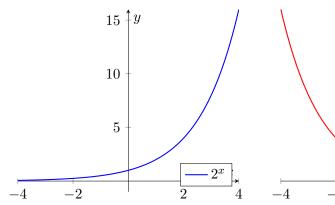
If
$$a>1$$
: as $x \to \infty$, $f(x) \to \infty$
as $x \to -\infty$, $f(x) \to 0$

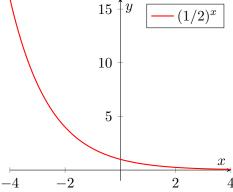
If
$$a<1$$
: as $x\to\infty$, $f(x)\to\infty$
as $x\to-\infty$, $f(x)\to\infty$

The following graphs illustrate these cases:

$$a > 1$$
: Example $f(x) = 2^x$

$$0 < a < 1$$
: Example $f(x) = (1/2)^x$





Transformations: Shifts, reflections, and stretches can be applied to a^x to model different scenarios.

1

Modeling Situations Using Exponential Functions

Exponential models often take the form

$$f(x) = C \cdot a^x,$$

or, when incorporating concepts like doubling time or half-life,

$$f(t) = C \cdot 2^{t/t_0}$$
 or $f(t) = C \cdot \left(\frac{1}{2}\right)^{t/t_0}$,

where C is the initial amount and t_0 represents the doubling time (or half-life).

Example. A bacteria culture doubles every 3 hours. If the initial population is 200, determine the population after 9 hours.

P(t) =
$$200 \cdot (2)^{13}$$

P(q) = $200 \cdot 2^{9/3}$

= $200 \cdot 2^3$

= $200 \cdot 2 \cdot 2 \cdot 2$

initial we dauble 3 times in 9 hours

= 1600

Example. A radioactive substance has a mass of 50 grams at t=0 and 25 grams at t=4 hours. Model the decay using the form

$$M(t) = C \cdot a^t,$$

and determine C and a.

At t=0:
$$M(0) = C \cdot a^0 = C \cdot 1 = C$$
 $\Rightarrow C = 50$

At t=4: $M(4) = 50 \cdot a^4 = 25$

$$\Rightarrow 50 \cdot a^4 = 25$$

$$\Rightarrow a^4 = \frac{1}{2}$$

$$\Rightarrow a = 4\sqrt{\frac{1}{2}}$$

Hence $M(4) = 50 \cdot (\sqrt[4]{1/2})^{\frac{1}{2}}$ (or $M(4) = 50 \cdot (\frac{1}{2})^{\frac{1}{4}}$)

Defining the Number e

Definition. The number e is defined as the unique real number satisfying

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.71828.\dots.$$

It serves as the base for the natural exponential function e^x .

Modeling Compound Interest

Compound interest can be modeled in two different ways: periodically and continuously.

Periodic Compounding

If an initial amount P is compounded n times per year at an annual interest rate r, the amount after t years is given by:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}.$$

Continuous Compounding

When interest is compounded continuously, the amount after t years is:

$$A = Pe^{rt}$$
.

Example. An investment of \$1000 is made at an annual interest rate of 5%, compounded monthly. Determine the amount after 10 years.

$$P = 1000$$
 $r = 0.05$ $n = 12$ $t = 10$

$$A = 1000 \left(1 + \frac{0.05}{12}\right)^{12 \cdot 10}$$

$$= $1647.01$$

Example. Now, consider the same investment compounded continuously. Find the amount after years.

$$A = Pe^{rt}$$

$$A = 1000 \cdot e^{0.05 \cdot 10}$$

$$A \approx $1648.72$$