Exponential Functions

Definition of the Exponential Function

Definition. Let a be a positive real number with a £ 1. The ezponential function with base
a is defined by

FOxY = ™

Graphs and Transformations of Exponential Functions

The exponential function f(z) = a” has the following properties:
e Domain: (-OO/ 003
e Range: (O ) 00)

¢ End Behavior:

¢ asl: a8 x>, () > 0
as X2 -0, £(x) > 0O
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The following graphs illustrate these cases:
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Transformations: Shifts, reflections, and stretches can be applied to a® to model different sce-
narios.



Modeling Situations Using Exponential Functions

Exponential models often take the form
f(ﬂj) =C- am,

or, when incorporating concepts like doubling time or half-life,

t/to
f(t)=C -2t or f(t):C-<;> ,

where C' is the initial amount and ¢y represents the doubling time (or half-life).

Example. A bacteria culture doubles every 3 hours. If the initial population is 200, determine the
population after 9 hours.
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Example. A radioactive substance has a mass of 50 grams at ¢t = 0 and 25 grams at ¢ = 4 hours.
Model the decay using the form
M(t)=C-d,

and determine C' and a.
At +=o: /V\(0§=C-a°= C:-l=c¢ = =59
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Defining the Number ¢

Definition. The number e is defined as the unique real number satisfying

1 n
e = lim (1 + > ~ 2.71828.,....
n

n—o0

It serves as the base for the natural exponential function e”.

Modeling Compound Interest

Compound interest can be modeled in two different ways: periodically and continuously.

Periodic Compounding

If an initial amount P is compounded n times per year at an annual interest rate r, the amount
after ¢ years is given by:
r\ nt
A=P (1 n —) .

n

Continuous Compounding

When interest is compounded continuously, the amount after ¢ years is:
A= Pe.

Example. An investment of $1000 is made at an annual interest rate of 5%, compounded monthly.
Determine the amount after 10 years.
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Example. Now, consider the same investment compounded continuously. Find the amount after
10 years.
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