Algebra Review

Simplifying Fractional Expressions with Exponents

Rule Name	Formula
Product Rule	$a^m \cdot a^n = a^{m+n}$
Quotient Rule	$\frac{a^{m}}{a^{n}} = a^{m-n}$
Power of a Power	$(a^m)^n = a^{m \cdot n}$
Negative Exponent	$a^{-n} = \frac{1}{a^n}, u \neq 0$
Fractional Exponent	$a^{\frac{m}{n}} = \sqrt{a^m}$

Example. Simplify $\frac{x^5}{x^2}$.

$$\frac{x^5}{x^2} = x^{5-2} = x^3$$

Example. Simplify $\frac{3x^{-2}}{9x^{-4}}$.

$$\frac{3x^{-2}}{9x^{-4}} = \frac{3}{9} \cdot \frac{x^{-2}}{x^{-4}} = \frac{1}{3} \cdot x^{-2 - (-4)} = \frac{1}{3} x^{2}$$

Example. Simplify the expression $\frac{a^{-3}b^5}{a^2b^{-4}}$, eliminating negative exponents.

$$\frac{a^{-3}b^{5}}{a^{2}b^{-4}} = a^{-3-2} \cdot b^{5-(-4)} = a^{-5} \cdot b^{9} = \frac{b^{9}}{a^{5}}$$

1

Solving Non-Linear Inequalities

Steps to Solve

- 1. Write the expression in factored form (if not already factored).
- 2. Find the critical points by setting each factor equal to zero.
- 3. Test the intervals between critical points.

Example. Solve $x^2 - x - 2 > 0$.

(1) Factor:

$$x^2 - x - 2 = (x - 2)(x + 1) > 0$$

2) Find the critical points (where the expression is 0)

Interval	X-2	X+1	(x-2)(x+1)
(-0,-1)	-	-	+
(-1,2)	-	+	-
(1, 20)	+	+	+

Example. Solve $\frac{x-6}{x+1} \ge 0$.

- 1) Both numerator and denominator are factored /
- 2) Find the critical points by setting the numerator and denominator equal to 0:

$$X-6=0$$
 \Rightarrow $X=6$ (fraction is 0 here)
 $X+1=0$ \Rightarrow $X=-1$ (undefined here)

Interval	X-6	X+1	(x-6)/(x+1)
(-0,-1)	_	1	+
(-1,6)	_	+	-
(6, 00)	+	+	+

Simplifying Radicals and Fractional Exponents

Example. Simplify $\sqrt[5]{32x^{10}y^{15}}$.

$$\sqrt[5]{32 \times^{10} y^{15}} = 32^{1/5} \cdot (x^{10})^{1/5} \cdot (y^{15})^{1/5}$$

$$= 2 \cdot x^2 \cdot y^3$$

Example. Simplify $\sqrt[4]{a^3b} \cdot \sqrt[4]{16a^5b^3}$.

We get

$$\sqrt{(a^{3}b) \cdot (16a^{5}b^{3})}$$
= $\sqrt{16a^{3}b^{4}}$
= $\sqrt{16a^{3}b^{4}}$
= $\sqrt{16a^{3}b^{4}}$
= $\sqrt{16a^{3}b^{4}}$
= $\sqrt{16a^{3}b^{4}}$