Midterm 1

Linear Algebra: Matrix Methods MATH 2130 Fall 2025

Friday September 26, 2025

Name:			
1X1 / 1/1 H ·			

PRACTICE EXAM

SOLUTIONS

Question:	1	2	3	4	5	Total
Points:	20	10	30	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete the exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with this cover sheet, and the questions in the correct order.
- You have 45 minutes to complete the exam.

1. (20 points) • Find all solutions to the following system of linear equations:

$$3x_1 + 9x_2 + 27x_3 = -3$$

 $-3x_1 - 11x_2 - 35x_3 = 5$
 $2x_1 + 8x_2 + 26x_3 = -4$

SOLUTION:

Solution. The solutions to the system of linear equations are:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \left\{ \begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} : t \in \mathbb{R} \right\}$$

or equivalently (substituting $t = -x_3$): x_3 is free, $x_2 = -4x_3 - 1$, and $x_1 = 3x_3 + 2$.

To find this, we row reduce the associated augmented matrix

Now we modify the RREF:

$$\left[
\begin{array}{c|cc|c}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & -1 & 0
\end{array}
\right]$$

Thus the solutions to the system of equations are:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} : t \in \mathbb{R}$$

as claimed. \Box

It is always a good idea to check that our answer does actually give solutions to the equations:

$$3(2) + 9(-1) + 27(0) \stackrel{?}{=} -3$$

 $-3(2) - 11(-1) - 35(0) \stackrel{?}{=} 5$
 $2(2) + 8(-1) + 26(0) \stackrel{?}{=} -4$

This means our particular solution $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ is a solution.

$$3(-3) + 9(4) + 27(-1) \stackrel{?}{=} 0$$

 $-3(-3) - 11(4) - 35(-1) \stackrel{?}{=} 0$
 $2(-3) + 8(4) + 26(-1) \stackrel{?}{=} 0$

This means that $\begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix}$ $t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ is a solution for every real number t.

Total for Question 1: 20

2. (10 points) • Consider the linear map ("transformation") $L : \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$L(x_1, x_2, x_3) = (2x_1 - x_3, 3x_2 + x_3).$$

Write down the matrix form of ("standard matrix for") the linear map L.

SOLUTION:

Solution. The matrix form of *L* is

$$\left[\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 3 & 1 \end{array}\right]$$

We find this by computing *L* on the standard basis elements:

$$L\begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 \cdot 1 - 0 \\ 3 \cdot 0 + 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$L\begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 \cdot 0 - 0 \\ 3 \cdot (1) + 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$L\begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 \cdot 0 - 1 \\ 3 \cdot 0 + 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

These give the corresponding columns of the matrix form of *L*.

We can also check our solution:

$$\begin{bmatrix} 2 & 0 & -1 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 - x_3 \\ 3x_2 + x_3 \end{bmatrix}$$

Total for Question 2: 10

3. • Consider the following matrix *A* and its corresponding Reduced Row Echelon Form matrix RREF(*A*):

$$A = \begin{bmatrix} 1 & -3 & 0 & -1 & 4 & -2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 3 & -9 & 0 & -3 & 2 & 4 \\ 1 & -3 & 1 & -2 & 4 & -1 \end{bmatrix} \quad \text{RREF}(A) = \begin{bmatrix} 1 & -3 & 0 & -1 & 0 & 2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) (3 points) *Are the rows of A linearly independent?*

SOLUTION:

Solution. **No**, there is a zero row in RREF(A).

(b) (3 points) Are the columns of A linearly independent?

SOLUTION:

Solution. **No**, there are columns in RREF(A) that do not have a leading 1 (pivot).

(c) (8 points) Find a set of linearly independent vectors with the same span as the rows of A.

SOLUTION:

Solution. A set of linearly independent vectors with the same span as the rows of A is given by the non-zero rows of RREF(A). In other words, a basis for the row space of A is given by

$$\begin{bmatrix} 1 \\ -3 \\ 0 \\ -1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}.$$

SOLUTION:

Solution. A set of linearly independent vectors with the same span as the columns of A is given by the columns of A that correspond to the columns in RREF(A) that have a leading 1 (pivot). In other words, a basis for the column space of A is:

$$\begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 2 \\ 4 \end{bmatrix}.$$

(e) (8 points) Find a linearly independent set of vectors that span the set of solutions to the matrix equation $A\mathbf{x} = \mathbf{0}$.

SOLUTION:

Solution. The modified matrix is

$$\begin{bmatrix} 1 & -3 & 0 & -1 & 0 & 2 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

so a basis for the set of solutions to the matrix equation $A\mathbf{x} = \mathbf{0}$ is

$$\begin{bmatrix} -3 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \\ -1 \\ -1 \end{bmatrix}.$$

Total for Question 3: 30

4. • Consider the matrix

$$B = \left[\begin{array}{rrr} 1 & 2 & 0 \\ 3 & 0 & -1 \\ 1 & 1 & 0 \end{array} \right]$$

(a) (10 points) Find the inverse of B.

SOLUTION:

Solution. The solution is

$$B^{-1} = \begin{bmatrix} -1 & 0 & 2 \\ 1 & 0 & -1 \\ -3 & -1 & 6 \end{bmatrix}$$

To do this, we consider the augmented matrix $\begin{bmatrix} B & I \end{bmatrix}$, and do row reduction until we arrive at the matrix $\begin{bmatrix} I & B^{-1} \end{bmatrix}$. In more detail:

$$\begin{bmatrix}
1 & 2 & 0 & 1 & 0 & 0 \\
3 & 0 & -1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -6 & -1 & -3 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & -6 & -1 & -3 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 3 & 1 & -6 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|ccc|}
0 & 0 & -1 & 3 & 1 & -6 \\
1 & 0 & 0 & -1 & 0 & 2 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & -3 & -1 & 6 \\
\end{array} \right]$$

The matrix on the right is the matrix B^{-1} .

(b) (10 points) Does there exist
$$\mathbf{x} \in \mathbb{R}^3$$
 such that $B\mathbf{x} = \begin{bmatrix} 5 \\ \sqrt{2} \\ \pi \end{bmatrix}$?

SOLUTION:

Solution. YES. Since B is invertible, given any $\mathbf{b} \in \mathbb{R}^3$, we have that $B(B^{-1}\mathbf{b}) = \mathbf{b}$. In particular, for $\mathbf{b} = \begin{bmatrix} 5 \\ \sqrt{2} \\ \pi \end{bmatrix}$, we have that $\mathbf{x} = B^{-1} \begin{bmatrix} 5 \\ \sqrt{2} \\ \pi \end{bmatrix}$ satisfies $B\mathbf{x} = \begin{bmatrix} 5 \\ \sqrt{2} \\ \pi \end{bmatrix}$.

Page 8 of 9

5. (20 points) • The equation

$$\mathbf{x} = C\mathbf{x} + \mathbf{d}$$

(the *Leontief Production Equation*) arises in the Leontief Input-Output Model. Here $\mathbf{x}, \mathbf{d} \in M_{n \times 1}(\mathbb{R})$ are column vectors (called the *production vector* and the *final demand vector*) and $C \in M_{n \times n}(\mathbb{R})$ is a square matrix (called the consumption matrix). Consider also the equation

$$\mathbf{p} = C^T \mathbf{p} + \mathbf{v}$$

(called the *Price Equation*), where $\mathbf{p}, \mathbf{v} \in M_{n \times 1}(\mathbb{R})$ are column vectors (called the *price vector* and the value added vector).

Show that

$$\mathbf{p}^T\mathbf{d}=\mathbf{v}^T\mathbf{x}.$$

(This quantity is known as *GDP*) [*Hint:* Compute $\mathbf{p}^T \mathbf{x}$ in two ways.]

SOLUTION:

Solution. We are given the equations

so that applying **x** to both sides gives

$$\mathbf{x} = C\mathbf{x} + \mathbf{d}$$
$$\mathbf{p} = C^T \mathbf{p} + \mathbf{v}$$

$$\mathbf{p}^{T}\mathbf{x} = (\mathbf{p}^{T}C + \mathbf{v}^{T})\mathbf{x}$$
$$= \mathbf{p}^{T}C\mathbf{x} + \mathbf{v}^{T}\mathbf{x}$$

Applying \mathbf{p}^T to both sides of the first equation (the Putting the two expressions for $\mathbf{p}^T\mathbf{x}$ together, we Leontief Production Equation) we have

have

$$\mathbf{p}^{T}\mathbf{x} = \mathbf{p}^{T}(C\mathbf{x} + \mathbf{d})$$
$$= \mathbf{p}^{T}C\mathbf{x} + \mathbf{p}^{T}\mathbf{d}$$

$$\mathbf{p}^T C \mathbf{x} + \mathbf{p}^T \mathbf{d} = \mathbf{p}^T C \mathbf{x} + \mathbf{v}^T \mathbf{x}$$

Now, the transpose of the second equation p = $C^T \mathbf{p} + \mathbf{v}$ (the Price Equation), is $\mathbf{p}^T = \mathbf{p}^T C + \mathbf{v}^T$, Subtracting $\mathbf{p}^T C \mathbf{x}$ from both sides, we arrive at

$$\mathbf{p}^T \mathbf{d} = \mathbf{v}^T \mathbf{x}$$

completing the proof.

Total for Question 5: 20