Exercise 1.5.20

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 1.5.20 from Lay [LLM21, §1.5]:

Exercise 1.5.20. Describe the solutions of the following (inhomogeneous) system in parametric vector form:

$$x_1 + 3x_2 - 5x_3 = 4$$

 $x_1 + 4x_2 - 8x_3 = 7$
 $-3x_1 - 7x_2 + 9x_3 = -6$

and provide a geometric comparison with the solution set to the (homogeneous) system:

$$x_1 + 3x_2 - 5x_3 = 0$$

 $x_1 + 4x_2 - 8x_3 = 0$
 $-3x_1 - 7x_2 + 9x_3 = 0$.

Solution. The augmented matrix for the first (inhomogeneous) system is

$$\left[\begin{array}{ccc|c}
1 & 3 & -5 & 4 \\
1 & 4 & -8 & 7 \\
-3 & -7 & 9 & -6
\end{array}\right]$$

We use row operations to put the left side of the matrix in RREF. First we subtract the first row from the second, and then add 3 times the first row to the third row:

$$\left[\begin{array}{ccc|c}
1 & 3 & -5 & 4 \\
0 & 1 & -3 & 3 \\
0 & 2 & -6 & 6
\end{array}\right]$$

Date: September 8, 2025.

Next we divide the last row by 2:

$$\left[\begin{array}{ccc|c}
1 & 3 & -5 & 4 \\
0 & 1 & -3 & 3 \\
0 & 1 & -3 & 3
\end{array}\right]$$

Next we subtract the first row from the third:

$$\left[\begin{array}{ccc|c}
1 & 3 & -5 & 4 \\
0 & 1 & -3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]$$

Next we add -3 times the second row to the first row:

$$\left[\begin{array}{ccc|c}
1 & 0 & 4 & -5 \\
0 & 1 & -3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]$$

The left hand side is in RREF. We then modify the matrix:

$$\left[\begin{array}{ccc|c}
1 & 0 & 4 & -5 \\
0 & 1 & -3 & 3 \\
0 & 0 & -1 & 0
\end{array}\right]$$

The solutions to the first (inhomogeneous) system are then

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ -1 \end{bmatrix} t + \begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix}, t \in \mathbb{R}.$$

The augmented matrix for the second (homogeneous) system is:

$$\begin{bmatrix}
1 & 3 & -5 & 0 \\
1 & 4 & -8 & 0 \\
-3 & -7 & 9 & 0
\end{bmatrix}$$

A similar computation then shows that the solutions to the second (homogeneous) system are

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ -1 \end{bmatrix} t, \quad t \in \mathbb{R}.$$

In other words, the solutions to the first (inhomogeneous) system are the solutions to the second

(homogeneous) system, shifted by the vector (particular solution) $\begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix}$.

Remark 0.1. In the above, we are free to replace t with $-x_3$, and the solutions to the first (inhomogeneous) system would then be given as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R},$$

and the solutions to the second (homogeneous) system would then be given as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ 1 \end{bmatrix} x_3, \quad x_3 \in \mathbb{R}.$$

It is always a good idea to check our solutions. We said that the solutions to the first (inhomogeneous) system were given by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ -1 \end{bmatrix} t + \begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix}, t \in \mathbb{R}.$$

First we should check the solution given by t = 0, namely

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix}$$

Plugging in, we see we are confirming that

$$(-5)$$
 + 3(3) - 5(0) $\stackrel{?}{=}$ 4
 (-5) + 4(3) - 8(0) $\stackrel{?}{=}$ 7
 $-3(-5)$ - 7(3) + 9(0) $\stackrel{?}{=}$ -6

Since the above hold, we did indeed have a solution (to the inhomogeneous system).

Next we check that

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ -1 \end{bmatrix}$$

is a solution to the second (homogeneous) system of equations. Plugging in, we see we are confirming:

Since the above hold, we see that we do have a solution (to the homogeneous system).

Together, this implies that

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ -1 \end{bmatrix} t + \begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix}, t \in \mathbb{R}$$

are solutions to the first (inhomogeneous) system.

Remark 0.2. Note that this only confirms that these are some of the solutions to the system, not that these are *all* of the solutions. These are in fact all of the solutions, as we proved above. I am just pointing out that our *check* here only confirms that the solutions we proposed were in fact solutions (not that they were *all* of the solutions).

REFERENCES

[LLM21] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Sixth edition, Pearson, 2021.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309 Email address: casa@math.colorado.edu