Midterm I

Intro to Discrete Math

MATH 2001

Fall 2024

Friday September 27, 2024

NAME: _____

PRACTICE EXAM SOLUTIONS

Question:	1	2	3	4	5	Total
Points:	25	15	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

1. • Consider the sets $A = \{3, 9\}$ and $B = \{2, 3, 5\}$.

For this problem **you do <u>not</u> need to justify your answer**.

(a) (5 points) List the elements of the power set $\mathscr{P}(A)$.

	SOLUTION:	Ø, {3}, {9}, {3,9}	
)	(5 points) List the elements of	the set $A \times B$.	
	SOLUTION:	(3,2), (3,3), (3,5), (9,2), (9,3), (9,5).	
:)	(5 points) List the elements of	the set $A \cup B$.	
	SOLUTION:	2,3,5,9	
.)	(5 points) Is it true that $2 \in (2)$	$A \cap B$?	
	SOLUTION:	No	
)	(5 points) List the elements of	the set $B - A$.	
	SOLUTION:	2,5	
			1
			25 points

2. (15 points) • Suppose that *A* and *B* are finite sets. What is $|A \times B|$ in terms of |A| and |B|? Explain.

SOLUTION:

Solution.

$$|A \times B| = |A||B|$$

Indeed, recall that the product $A \times B$ is the set of ordered pairs:

$$A \times B := \{(a, b) : a \in A, b \in B\}.$$

There are |A| choices for the first entry of an ordered pair (a, b) in the product $A \times B$, and then for each choice of first entry there are |B| choices for the second entry, so that all together, we have |A||B| ordered pairs in the product $A \times B$.

You can find a similar explanation on p.9 of Hammack, where this is Fact 1.1.

Also, as an example to illustrate the formula, suppose that $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2\}$. Then we have

$$A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2), (a_3, b_1), (a_3, b_2)\},\$$

and so we can count that $|A \times B| = 6 = 3 \cdot 2 = |A||B|$, confirming the general formula in this special case. (See also Problem 1(b) for a similar example.)

2	
15 points	

3. (20 points) • For each $t \in \mathbb{R}$, consider the set

$$A_t = \{(x, y) \in \mathbb{R}^2 : t \le x \le t + 1 \text{ and } y = t\}.$$

Describe the union

$$\bigcup_{t\in[0,1]}A_i$$

as a geometric object in the plane \mathbb{R}^2 . A good picture and a brief explanation of your solution is sufficient for this problem.

SOLUTION:

Solution. For each $t \in \mathbb{R}$, the set A_t is the horizontal line segment joining the points (t, t) and (t + 1, t).

Therefore, the union of the A_t over all t in the interval [0, 1] is the region bounded by the parallelogram with vertices (0, 0), (1, 0), (2, 1), and (1, 1).

3	
20 points	

- 4. Let $a \in \mathbb{R}$ and let f be a function from \mathbb{R} to \mathbb{R} (i.e., a function just like you are used to in all of your math classes, such as $f(x) = x^2$, $f(x) = \sin(x)$, etc.).
 - (a) (10 points) Write the following sentence using only logical and mathematical notation (e.g., the symbols $\land, \forall, \exists, \Longrightarrow, \in, \mathbb{R}, \text{etc.}$). You may find it convenient to use the set $\mathbb{R}^+ := \{x \in \mathbb{R} : x > 0\}$.

For all real numbers M, there exists a positive real number δ such that for all real numbers x, if $0 < |x - a| < \delta$, then f(x) is greater than M.

SOLUTION:

$$\forall M \in \mathbb{R}, \ \exists \delta \in \mathbb{R}^+ \ s.t. \ \forall x \in \mathbb{R}, \ (0 < |x - a| < \delta) \implies (f(x) > M).$$

(b) (5 points) Negate your answer to the previous part and simplify it as much as you can using standard logical equivalences.

SOLUTION:

$$\sim (\forall M \in \mathbb{R}, \exists \delta \in \mathbb{R}^+ s.t. \forall x \in \mathbb{R}, (0 < |x - a| < \delta) \implies (f(x) > M))$$
$$\exists M \in \mathbb{R} s.t. \sim (\exists \delta \in \mathbb{R}^+ s.t. \forall x \in \mathbb{R}, (0 < |x - a| < \delta) \implies (f(x) > M))$$
$$\exists M \in \mathbb{R} s.t. \forall \delta \in \mathbb{R}^+, \sim (\forall x \in \mathbb{R}, (0 < |x - a| < \delta) \implies (f(x) > M))$$
$$\exists M \in \mathbb{R} s.t. \forall \delta \in \mathbb{R}^+, \exists x \in \mathbb{R} s.t. \sim ((0 < |x - a| < \delta) \implies (f(x) > M))$$
$$\exists M \in \mathbb{R} s.t. \forall \delta \in \mathbb{R}^+, \exists x \in \mathbb{R} s.t. (0 < |x - a| < \delta) \implies (f(x) > M))$$

or

$$\exists M \in \mathbb{R} \ s.t. \ \forall \delta \in \mathbb{R}^+, \ \exists x \in \mathbb{R} \ s.t. \ (0 < |x-a| < \delta) \ \land \ (f(x) \le M)$$

(c) (5 points) *Rewrite your answer to the previous part in plain english.*

SOLUTION:

There exists a real number M *such that for all positive real numbers* δ *, there exists a real number* x *such that* $0 < |x - a| < \delta$ *and* f(x) *is not greater than* M.

or

There exists a real number M such that for all positive real numbers δ , there exists a real number x such that $0 < |x - a| < \delta$ and f(x) is less than or equal to M.

4 20 points

- 5. True or False. For this problem you do not need to justify your answer.
 - (a) (4 points) **True or False** (circle one). If *A* and *B* are finite sets and $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$.

SOLUTION: TRUE. More generally, for finite sets *A* and *B*, we have $|A \cup B| = |A| + |B| - |A \cap B|$.

(b) (4 points) **True or False** (circle one). If *A* and *B* are subsets of a set *X*, then, regarding complements of subsets of *X*, we have $(A \cap B)^C = A^C \cup B^C$.

SOLUTION: TRUE. We explained this in class.

(c) (4 points) **True or False** (circle one). The negation of the statement $\forall x \in X, \exists y \in Y \ s.t. \ p(x,y)$ is logically equivalent to the statement $\exists x \in X \ s.t. \ \exists y \in Y \ s.t. \sim p(x,y)$.

SOLUTION: FALSE. The negation is logically equivalent to $\exists x \in X \ s.t. \ \forall y \in Y, \ \sim p(x, y)$. To see that $\exists x \in X \ s.t. \ \exists y \in Y \ s.t. \ \sim p(x, y)$ is NOT the correct negation, consider the example where $X = \mathbb{Z} - \{0\}, Y = \mathbb{Q}$, and for $x \in X$ and $y \in Y$, we take p(x, y) to be the statement xy = 1 (then both the statement $\forall x \in X, \ \exists y \in Y \ s.t. \ p(x, y)$ and the claimed negation, $\exists x \in X \ s.t. \ \exists y \in Y \ s.t. \ \sim p(x, y)$, would be true, which is not possible).

(d) (4 points) **True or False** (circle one). The truth table for the statement $p \land q$ is

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	F

SOLUTION: FALSE. The third row is not correct: if *p* is false and *q* is true, then $p \land q$ if false.

(e) (4 points) **True or False** (circle one). $(\mathbb{R} - \mathbb{Z}) \times \mathbb{N} = (\mathbb{R} \times \mathbb{N}) - (\mathbb{Z} \times \mathbb{N})$.

SOLUTION: TRUE. In fact, more generally if *A*, *B*, and *C* are sets, then we have the equality $(A - B) \times C = (A \times C) - (B \times C)$.

5	
20 points	