Midterm II

Intro to Discrete Math

MATH 2001

Fall 2024

Monday November 4, 2024

NAME: _____

PRACTICE EXAM

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single **.pdf** to **Canvas**, with this **cover sheet**, and the questions in the correct order.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

- 1. TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
 - (a) (4 points) **TRUE** or **FALSE** (circle one). For any natural number *n*, we have $5^n = \sum_{k=0}^n \binom{n}{k} 4^k$.
 - (b) (4 points) **TRUE** or **FALSE** (circle one). If *A*, *B*, and *C* are finite sets that are pairwise disjoint (i.e., $A \cup B \cup C = A \sqcup B \sqcup C$), then $|A \cup B \cup C| = |A| + |B| + |C|$.
 - (c) (4 points) **TRUE** or **FALSE** (circle one). If *n* is a natural number, then *n*! is the number of lists of length *n* that can be made from *n* symbols, without repetition.
 - (d) (4 points) **TRUE** or **FALSE** (circle one). Suppose a multiset *A* has *n* elements, with multiplicities p_1, p_2, \ldots, p_k . Then the total number of permutations of *A* is $\binom{n!}{(p_1p_2\cdots p_k)!}$.
 - (e) (4 points) **TRUE** or **FALSE** (circle one). Suppose *n* objects are placed into *k* boxes. Then at least one box contains $\lfloor \frac{n}{k} \rfloor$ or more objects, and at least one box contains $\lceil \frac{n}{k} \rceil$ or fewer objects.

1
20 points

2. (20 points) • For a five card hand from a standard deck of cards, a *full house* is a hand that has three cards of one number and two cards of another number. For instance $K\clubsuit$, $K\diamondsuit$, $K\heartsuit$, $3\heartsuit$, $3\clubsuit$ is a full house. (Here, as in class, we are numbering the cards, with ace being 1, jack being 11, queen being 12, and king being 13.)

TRUE or FALSE:

There are
$$(13 \cdot 12) \cdot \begin{pmatrix} 4 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 full houses in a standard deck of cards.

If true, give a short *proof* of the statement. If false, give a short *proof* that the statement is false. Your solution must start with the sentence, *"This statement is TRUE,"* or the sentence, *"This statement is FALSE."*

[*Hint*: How many five card hands have three kings and two threes?]

2
20 points

3. (20 points) • Let *n*, *k*, and ℓ be natural numbers with $2 \le k \le \ell \le n$. Use a combinatorial proof to show

$$\binom{n}{2}\binom{n-2}{k-2}\binom{n-k}{\ell-k} = \binom{n}{\ell}\binom{\ell}{k}\binom{k}{2}.$$

[*Hint*: You may want to consider sets $A \subseteq B \subseteq C$.]

3
20 points

4. (20 points) • TRUE or FALSE:

If
$$n \in \mathbb{N}$$
, then $\binom{2n}{n}$ is even.

If true, give a *direct proof* of the statement. If false, provide a *counter example*, and prove that it is a counter example. Your solution must start with the sentence, *"This statement is TRUE,"* or the sentence, *"This statement is FALSE."*

4
20 points

5. (20 points) • In class we showed that the equation $x^2 + y^2 = 3$ has no rational solutions. Use this fact to give a *proof by contradiction* of the statement:

If k is an odd positive integer, then the equation $x^2 + y^2 = 3^k$ has no rational solutions.

5		

20 points